Tamara Agner, Amadeo Zimermann, Fabricio Machado, Brenno A. D. Neto, Pedro H. H. de Araújo, Claudia Sayer
{"title":"Polymerization of N-Butyl Vinyl Ether Catalyzed by Iron-Containing Imidazolium-Based Ionic Liquid","authors":"Tamara Agner, Amadeo Zimermann, Fabricio Machado, Brenno A. D. Neto, Pedro H. H. de Araújo, Claudia Sayer","doi":"10.1002/mren.202300002","DOIUrl":null,"url":null,"abstract":"<p>The iron-containing imidazolium-based ionic liquids (ILs) 1-<i>n</i>-butyl-3-methylimidazolium heptachlorodiferrate (BMI.Fe<sub>2</sub>Cl<sub>7</sub>) and 1-<i>n</i>-butyl-3-methylimidazolium tetrachloroferrate (BMI.FeCl<sub>4</sub>) are applied as catalysts in the homogeneous polymerization of <i>n</i>-butyl vinyl ether. Both solventless conditions as well as using different organic solvents, catalyst concentrations, temperatures, and reaction times are tested to assess the polymerization conditions that lead to the highest molecular weights of poly(<i>n</i>-butyl vinyl ether). The Lewis acidic IL BMI.Fe<sub>2</sub>Cl<sub>7</sub> proves to be highly efficient, even at low catalyst concentrations. In bulk polymerization, polymers with 142 kg mol<sup>−1</sup> are obtained using a 1:10000 molar ratio of catalyst to monomer. In solution polymerization, the monomer consumption is also rapid and the molecular weight of the polymer is related to the catalyst concentration used. These results indicate the potential of this catalyst for industrial applications. In contrast with the acidic IL, the neutral iron-containing imidazolium-based IL BMI.FeCl<sub>4</sub> does not show any catalytic activity.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The iron-containing imidazolium-based ionic liquids (ILs) 1-n-butyl-3-methylimidazolium heptachlorodiferrate (BMI.Fe2Cl7) and 1-n-butyl-3-methylimidazolium tetrachloroferrate (BMI.FeCl4) are applied as catalysts in the homogeneous polymerization of n-butyl vinyl ether. Both solventless conditions as well as using different organic solvents, catalyst concentrations, temperatures, and reaction times are tested to assess the polymerization conditions that lead to the highest molecular weights of poly(n-butyl vinyl ether). The Lewis acidic IL BMI.Fe2Cl7 proves to be highly efficient, even at low catalyst concentrations. In bulk polymerization, polymers with 142 kg mol−1 are obtained using a 1:10000 molar ratio of catalyst to monomer. In solution polymerization, the monomer consumption is also rapid and the molecular weight of the polymer is related to the catalyst concentration used. These results indicate the potential of this catalyst for industrial applications. In contrast with the acidic IL, the neutral iron-containing imidazolium-based IL BMI.FeCl4 does not show any catalytic activity.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.