{"title":"Circular (Yet Sound) Proofs in Propositional Logic","authors":"Albert Atserias, Massimo Lauria","doi":"10.1145/3579997","DOIUrl":null,"url":null,"abstract":"Proofs in propositional logic are typically presented as trees of derived formulas or, alternatively, as directed acyclic graphs of derived formulas. This distinction between tree-like vs. dag-like structure is particularly relevant when making quantitative considerations regarding, for example, proof size. Here we analyze a more general type of structural restriction for proofs in rule-based proof systems. In this definition, proofs are directed graphs of derived formulas in which cycles are allowed as long as every formula is derived at least as many times as it is required as a premise. We call such proofs “circular”. We show that, for all sets of standard inference rules with single or multiple conclusions, circular proofs are sound. We start the study of the proof complexity of circular proofs at Circular Resolution, the circular version of Resolution. We immediately see that Circular Resolution is stronger than dag-like Resolution since, as we show, the propositional encoding of the pigeonhole principle has circular Resolution proofs of polynomial size. Furthermore, for derivations of clauses from clauses, we show that Circular Resolution is, surprisingly, equivalent to Sherali-Adams, a proof system for reasoning through polynomial inequalities that has linear programming at its base. As corollaries we get: (1) polynomial-time (LP-based) algorithms that find Circular Resolution proofs of constant width, (2) examples that separate Circular from dag-like Resolution, such as the pigeonhole principle and its variants, and (3) exponentially hard cases for Circular Resolution. Contrary to the case of Circular Resolution, for Frege we show that circular proofs can be converted into tree-like proofs with at most polynomial overhead.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"24 1","pages":"1 - 26"},"PeriodicalIF":0.7000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3579997","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7
Abstract
Proofs in propositional logic are typically presented as trees of derived formulas or, alternatively, as directed acyclic graphs of derived formulas. This distinction between tree-like vs. dag-like structure is particularly relevant when making quantitative considerations regarding, for example, proof size. Here we analyze a more general type of structural restriction for proofs in rule-based proof systems. In this definition, proofs are directed graphs of derived formulas in which cycles are allowed as long as every formula is derived at least as many times as it is required as a premise. We call such proofs “circular”. We show that, for all sets of standard inference rules with single or multiple conclusions, circular proofs are sound. We start the study of the proof complexity of circular proofs at Circular Resolution, the circular version of Resolution. We immediately see that Circular Resolution is stronger than dag-like Resolution since, as we show, the propositional encoding of the pigeonhole principle has circular Resolution proofs of polynomial size. Furthermore, for derivations of clauses from clauses, we show that Circular Resolution is, surprisingly, equivalent to Sherali-Adams, a proof system for reasoning through polynomial inequalities that has linear programming at its base. As corollaries we get: (1) polynomial-time (LP-based) algorithms that find Circular Resolution proofs of constant width, (2) examples that separate Circular from dag-like Resolution, such as the pigeonhole principle and its variants, and (3) exponentially hard cases for Circular Resolution. Contrary to the case of Circular Resolution, for Frege we show that circular proofs can be converted into tree-like proofs with at most polynomial overhead.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.