The one-prime power hypothesis for conjugacy classes restricted to normal subgroups and quotient groups

IF 0.7 Q2 MATHEMATICS
Julian Brough
{"title":"The one-prime power hypothesis for conjugacy classes restricted to normal subgroups and quotient groups","authors":"Julian Brough","doi":"10.22108/IJGT.2018.110074.1472","DOIUrl":null,"url":null,"abstract":"We say that a group $G$ satisfies the one-prime power hypothesis for conjugacy classes if the greatest common divisor for all pairs of distinct conjugacy class sizes are prime powers‎. ‎Insoluble groups which satisfy the one-prime power hypothesis have been classified‎. ‎However it has remained an open question whether the one-prime power hypothesis is inherited by normal subgroups and quotients groups‎. ‎In this note we construct examples to show the one-prime power hypothesis is not necessarily inherited by normal subgroups or quotient groups‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2018.110074.1472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We say that a group $G$ satisfies the one-prime power hypothesis for conjugacy classes if the greatest common divisor for all pairs of distinct conjugacy class sizes are prime powers‎. ‎Insoluble groups which satisfy the one-prime power hypothesis have been classified‎. ‎However it has remained an open question whether the one-prime power hypothesis is inherited by normal subgroups and quotients groups‎. ‎In this note we construct examples to show the one-prime power hypothesis is not necessarily inherited by normal subgroups or quotient groups‎.
限制于正规子群和商群的共轭类的一素数幂假设
我们说群$G$满足共轭类的一次素数幂假设,如果所有不同共轭类大小对的最大公约数是素数幂‎. ‎满足一素数幂假设的不溶群已被分类‎. ‎然而,一素数幂假设是否由正规子群和商群继承仍然是一个悬而未决的问题‎. ‎在这篇文章中,我们构造了一些例子来证明一素数幂假设不一定由正规子群或商群继承‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信