A Carleman inequality on product manifolds and applications to rigidity problems

IF 2.1 2区 数学 Q1 MATHEMATICS
Ao Sun
{"title":"A Carleman inequality on product manifolds and applications to rigidity problems","authors":"Ao Sun","doi":"10.1515/ans-2022-0048","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we prove a Carleman inequality on a product manifold M × R M\\times {\\mathbb{R}} . As applications, we prove that (1) a periodic harmonic function on R 2 {{\\mathbb{R}}}^{2} that decays faster than all exponential rate in one direction must be constant 0, (2) a periodic minimal hypersurface in R 3 {{\\mathbb{R}}}^{3} that has an end asymptotic to a hyperplane faster than all exponential rate in one direction must be a hyperplane, and (3) a periodic translator in R 3 {{\\mathbb{R}}}^{3} that has an end asymptotic to a hyperplane faster than all exponential rates in one direction must be a translating hyperplane.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we prove a Carleman inequality on a product manifold M × R M\times {\mathbb{R}} . As applications, we prove that (1) a periodic harmonic function on R 2 {{\mathbb{R}}}^{2} that decays faster than all exponential rate in one direction must be constant 0, (2) a periodic minimal hypersurface in R 3 {{\mathbb{R}}}^{3} that has an end asymptotic to a hyperplane faster than all exponential rate in one direction must be a hyperplane, and (3) a periodic translator in R 3 {{\mathbb{R}}}^{3} that has an end asymptotic to a hyperplane faster than all exponential rates in one direction must be a translating hyperplane.
积流形上的一个Carleman不等式及其在刚性问题上的应用
摘要本文证明了乘积流形M×RM\times上的Carleman不等式。作为应用,我们证明了(1)R2{\mathbb{R}}^{2}上一个在一个方向上比所有指数速率衰减得更快的周期调和函数必须是常数0,和(3)R3{\mathbb{R}}}}^{3}中的周期翻译器,其末端渐近于超平面,在一个方向上比所有指数速率都快,必须是平移超平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信