A Survey of Optimal Control Problems Evolved on Riemannian Manifolds

IF 1.2 Q2 MATHEMATICS, APPLIED
Li Deng null, Xu Zhang
{"title":"A Survey of Optimal Control Problems Evolved on Riemannian Manifolds","authors":"Li Deng null, Xu Zhang","doi":"10.4208/csiam-am.so-2021-0018","DOIUrl":null,"url":null,"abstract":". In this paper, we present our optimality results on optimal control problems for ordinary differential equations on Riemannian manifolds. For the problems with free states at the terminal time, we obtain the first and second-order necessary conditions, dynamical programming principle, and their relations. Then, we consider the problems with the initial and final states satisfying some inequality-type and equality-type constraints, and establish the corresponding first and second-order necessary conditions of optimal pairs in the sense of either spike or convex variations. For each of the above results concerning second-order optimality conditions, the curvature tensor of the underlying manifold plays a crucial role.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we present our optimality results on optimal control problems for ordinary differential equations on Riemannian manifolds. For the problems with free states at the terminal time, we obtain the first and second-order necessary conditions, dynamical programming principle, and their relations. Then, we consider the problems with the initial and final states satisfying some inequality-type and equality-type constraints, and establish the corresponding first and second-order necessary conditions of optimal pairs in the sense of either spike or convex variations. For each of the above results concerning second-order optimality conditions, the curvature tensor of the underlying manifold plays a crucial role.
黎曼流形上演化的最优控制问题综述
本文给出了关于黎曼流形上常微分方程最优控制问题的最优性结果。对于终端时间具有自由态的问题,我们得到了一阶和二阶必要条件、动态规划原理及其关系。然后,我们考虑了初始状态和最终状态满足不等式型和等式型约束的问题,并在尖峰或凸变差的意义上建立了最优对的相应的一阶和二阶必要条件。对于上面关于二阶最优性条件的每个结果,底层流形的曲率张量起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信