A. I. Kristiana, M. Hidayat, R. Adawiyah, D. Dafik, S. Setiawani, R. Alfarisi
{"title":"ON LOCAL IRREGULARITY OF THE VERTEX COLORING OF THE CORONA PRODUCT OF A TREE GRAPH","authors":"A. I. Kristiana, M. Hidayat, R. Adawiyah, D. Dafik, S. Setiawani, R. Alfarisi","doi":"10.15826/umj.2022.2.008","DOIUrl":null,"url":null,"abstract":"Let \\(G=(V,E)\\) be a graph with a vertex set \\(V\\) and an edge set \\(E\\). The graph \\(G\\) is said to be with a local irregular vertex coloring if there is a function \\(f\\) called a local irregularity vertex coloring with the properties: (i) \\(l:(V(G)) \\to \\{ 1,2,...,k \\} \\) as a vertex irregular \\(k\\)-labeling and \\(w:V(G)\\to N,\\) for every \\(uv \\in E(G),\\) \\({w(u)\\neq w(v)}\\) where \\(w(u)=\\sum_{v\\in N(u)}l(i)\\) and (ii) \\(\\mathrm{opt}(l)=\\min\\{ \\max \\{ l_{i}: l_{i} \\ \\text{is a vertex irregular labeling}\\}\\}\\). The chromatic number of the local irregularity vertex coloring of \\(G\\) denoted by \\(\\chi_{lis}(G)\\), is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular vertex coloring of \\(P_m\\bigodot G\\) when \\(G\\) is a family of tree graphs, centipede \\(C_n\\), double star graph \\((S_{2,n})\\), Weed graph \\((S_{3,n})\\), and \\(E\\) graph \\((E_{3,n})\\). ","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.2.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Let \(G=(V,E)\) be a graph with a vertex set \(V\) and an edge set \(E\). The graph \(G\) is said to be with a local irregular vertex coloring if there is a function \(f\) called a local irregularity vertex coloring with the properties: (i) \(l:(V(G)) \to \{ 1,2,...,k \} \) as a vertex irregular \(k\)-labeling and \(w:V(G)\to N,\) for every \(uv \in E(G),\) \({w(u)\neq w(v)}\) where \(w(u)=\sum_{v\in N(u)}l(i)\) and (ii) \(\mathrm{opt}(l)=\min\{ \max \{ l_{i}: l_{i} \ \text{is a vertex irregular labeling}\}\}\). The chromatic number of the local irregularity vertex coloring of \(G\) denoted by \(\chi_{lis}(G)\), is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular vertex coloring of \(P_m\bigodot G\) when \(G\) is a family of tree graphs, centipede \(C_n\), double star graph \((S_{2,n})\), Weed graph \((S_{3,n})\), and \(E\) graph \((E_{3,n})\).
设\(G=(V,E)\)是一个具有顶点集\(V\)和边集\(E\)的图。如果存在一个称为局部不规则顶点着色的函数\(f\),其性质为:(i)\(l:(V(G))\ to \{1,2,…,k\}\)作为顶点不规则\(k\)标记,并且对于E(G)中的每一个\(uv\,\)其中\(w(u)=\sum_{v\ in N(u)}l(i)\)和(ii)\。由\(\chi_{lis}(G)\)表示的\(G\)的局部不规则顶点着色的色数,是最大标签在所有此类局部不规则点着色上的最小基数。本文研究了当\(G\)是树图、蜈蚣图(C_n\)、双星图(S_{2,n})、Weed图(S_{3,n})和图(E_{3,n})的一个族时\(P_m\ bigodot G\)的局部不规则顶点着色。