{"title":"Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents","authors":"A. Kuryliak","doi":"10.30970/ms.59.2.178-186","DOIUrl":null,"url":null,"abstract":"It is proved analogues of the classical Wiman's inequality} for the class $\\mathcal{D}$ of absolutely convergents in the whole complex plane $\\mathbb{C}^p$ (entire) Dirichlet series of the form $\\displaystyle F(z)=\\sum\\limits_{\\|n\\|=0}^{+\\infty} a_ne^{(z,\\lambda_n)}$ with such a sequence of exponents $(\\lambda_n)$ that $\\{\\lambda_n\\colon n\\in\\mathbb{Z}^p\\}\\subset \\mathbb{C}^p$ and $\\lambda_n\\not=\\lambda_m$ for all $n\\not= m$. For $F\\in\\mathcal{D}$ and $z\\in\\mathbb{C}^p\\setminus\\{0\\}$ we denote \n$\\mathfrak{M}(z,F):=\\sum\\limits_{\\|n\\|=0}^{+\\infty}|a_n|e^{\\Re(z,\\lambda_n)},\\quad\\mu(z,F):=\\sup\\{|a_n|e^{\\mathop{\\rm Re}(z,\\lambda_n)}\\colon n\\in\\mathbb{Z}^ p_+\\},$ \n$(m_k)_{k\\geq 0}$ is $(\\mu_{k})_{k\\geq 0}$ the sequence $(-\\ln|a_{n}|)_{n\\in\\mathbb{Z}^p_+}$ arranged by non-decreasing. \nThe main result of the paper: Let $F\\in \\mathcal{D}.$ If $(\\exists \\alpha > 0)\\colon$ $\\int\\nolimits_{t_0}^{+\\infty}t^{-2}{(n_1(t))^{\\alpha}}dt<+\\infty,$ \n$n_1(t)\\overset{def}=\\sum\\nolimits_{\\mu_n\\leq t} 1,\\quad t_0>0,$ then there exists a set $E\\subset\\gamma_{+}(F),$\\ such that \n$\\tau_{2p}(E\\cap\\gamma_{+}(F))=\\int_{E\\cap\\gamma_{+}(F)}|z|^{-2p}dxdy\\leq C_p, z=x+iy\\in\\mathbb{C}^p,$ \nand relation $\\mathfrak{M}(z,F)= o(\\mu(z,F)\\ln^{1/\\alpha} \\mu(z,F))$ holds as $z\\to \\infty$\\ $(z\\in \\gamma_R\\setminus E)$ for each $R>0$, where \n$\\gamma_R=\\Big\\{z\\in\\mathbb{C}^p\\setminus\\{0\\}\\colon\\ K_F(z)\\leq R \\Big\\},\\quad K_F(z)=\\sup\\Big\\{\\frac1{\\Phi_z( t)}\\int^{ t}_0 \\frac {{\\Phi_z}(u)}{u} du\\colon\\ t \\geq t_0\\Big\\},$ $\\gamma(F)=\\{z\\in\\mathbb{C}\\colon \\ \\lim\\limits_{t\\to +\\infty}\\Phi_z(t)=+\\infty\\},\\quad \\gamma_+(F)=\\mathop{\\cup}_{R>0}\\gamma_R$, $\\Phi_z(t)=\\frac1{t}\\ln\\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.2.178-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
It is proved analogues of the classical Wiman's inequality} for the class $\mathcal{D}$ of absolutely convergents in the whole complex plane $\mathbb{C}^p$ (entire) Dirichlet series of the form $\displaystyle F(z)=\sum\limits_{\|n\|=0}^{+\infty} a_ne^{(z,\lambda_n)}$ with such a sequence of exponents $(\lambda_n)$ that $\{\lambda_n\colon n\in\mathbb{Z}^p\}\subset \mathbb{C}^p$ and $\lambda_n\not=\lambda_m$ for all $n\not= m$. For $F\in\mathcal{D}$ and $z\in\mathbb{C}^p\setminus\{0\}$ we denote
$\mathfrak{M}(z,F):=\sum\limits_{\|n\|=0}^{+\infty}|a_n|e^{\Re(z,\lambda_n)},\quad\mu(z,F):=\sup\{|a_n|e^{\mathop{\rm Re}(z,\lambda_n)}\colon n\in\mathbb{Z}^ p_+\},$
$(m_k)_{k\geq 0}$ is $(\mu_{k})_{k\geq 0}$ the sequence $(-\ln|a_{n}|)_{n\in\mathbb{Z}^p_+}$ arranged by non-decreasing.
The main result of the paper: Let $F\in \mathcal{D}.$ If $(\exists \alpha > 0)\colon$ $\int\nolimits_{t_0}^{+\infty}t^{-2}{(n_1(t))^{\alpha}}dt<+\infty,$
$n_1(t)\overset{def}=\sum\nolimits_{\mu_n\leq t} 1,\quad t_0>0,$ then there exists a set $E\subset\gamma_{+}(F),$\ such that
$\tau_{2p}(E\cap\gamma_{+}(F))=\int_{E\cap\gamma_{+}(F)}|z|^{-2p}dxdy\leq C_p, z=x+iy\in\mathbb{C}^p,$
and relation $\mathfrak{M}(z,F)= o(\mu(z,F)\ln^{1/\alpha} \mu(z,F))$ holds as $z\to \infty$\ $(z\in \gamma_R\setminus E)$ for each $R>0$, where
$\gamma_R=\Big\{z\in\mathbb{C}^p\setminus\{0\}\colon\ K_F(z)\leq R \Big\},\quad K_F(z)=\sup\Big\{\frac1{\Phi_z( t)}\int^{ t}_0 \frac {{\Phi_z}(u)}{u} du\colon\ t \geq t_0\Big\},$ $\gamma(F)=\{z\in\mathbb{C}\colon \ \lim\limits_{t\to +\infty}\Phi_z(t)=+\infty\},\quad \gamma_+(F)=\mathop{\cup}_{R>0}\gamma_R$, $\Phi_z(t)=\frac1{t}\ln\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.