Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification

IF 1 Q3 STATISTICS & PROBABILITY
Josephine Merhi Bleik
{"title":"Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification","authors":"Josephine Merhi Bleik","doi":"10.1155/2019/8610723","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8610723","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8610723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.
非对称拉普拉斯分布规范下同步回归分位数的全贝叶斯估计
在本文中,我们感兴趣的是通过贝叶斯方法在回归环境中同时估计几个分位数。假设误差项具有不对称拉普拉斯分布,并利用该分布的两个不同分位数之间的关系,我们提出了一种简单的完全贝叶斯方法,该方法满足分位数的非交叉性质。为了实现,我们在吉布斯算法中使用Metropolis Hastings对未知参数的全条件分布进行采样。模拟示例显示了基础方法与其他替代方法的性能和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信