{"title":"Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification","authors":"Josephine Merhi Bleik","doi":"10.1155/2019/8610723","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8610723","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8610723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we are interested in estimating several quantiles simultaneously in a regression context via the Bayesian approach. Assuming that the error term has an asymmetric Laplace distribution and using the relation between two distinct quantiles of this distribution, we propose a simple fully Bayesian method that satisfies the noncrossing property of quantiles. For implementation, we use Metropolis-Hastings within Gibbs algorithm to sample unknown parameters from their full conditional distribution. The performance and the competitiveness of the underlying method with other alternatives are shown in simulated examples.