Inference of random effects for linear mixed-effects models with a fixed number of clusters

Pub Date : 2022-05-14 DOI:10.1007/s10463-022-00825-7
Chih-Hao Chang, Hsin-Cheng Huang, Ching-Kang Ing
{"title":"Inference of random effects for linear mixed-effects models with a fixed number of clusters","authors":"Chih-Hao Chang,&nbsp;Hsin-Cheng Huang,&nbsp;Ching-Kang Ing","doi":"10.1007/s10463-022-00825-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a linear mixed-effects model with a clustered structure, where the parameters are estimated using maximum likelihood (ML) based on possibly unbalanced data. Inference with this model is typically done based on asymptotic theory, assuming that the number of clusters tends to infinity with the sample size. However, when the number of clusters is fixed, classical asymptotic theory developed under a divergent number of clusters is no longer valid and can lead to erroneous conclusions. In this paper, we establish the asymptotic properties of the ML estimators of random-effects parameters under a general setting, which can be applied to conduct valid statistical inference with fixed numbers of clusters. Our asymptotic theorems allow both fixed effects and random effects to be misspecified, and the dimensions of both effects to go to infinity with the sample size.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00825-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00825-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a linear mixed-effects model with a clustered structure, where the parameters are estimated using maximum likelihood (ML) based on possibly unbalanced data. Inference with this model is typically done based on asymptotic theory, assuming that the number of clusters tends to infinity with the sample size. However, when the number of clusters is fixed, classical asymptotic theory developed under a divergent number of clusters is no longer valid and can lead to erroneous conclusions. In this paper, we establish the asymptotic properties of the ML estimators of random-effects parameters under a general setting, which can be applied to conduct valid statistical inference with fixed numbers of clusters. Our asymptotic theorems allow both fixed effects and random effects to be misspecified, and the dimensions of both effects to go to infinity with the sample size.

分享
查看原文
具有固定簇数的线性混合效应模型的随机效应推断
我们考虑了一个具有聚类结构的线性混合效应模型,其中参数是基于可能不平衡的数据使用最大似然(ML)估计的。该模型的推理通常基于渐近理论,假设簇的数量随着样本量的增加而趋于无穷大。然而,当聚类数量固定时,在聚类数量不同的情况下发展的经典渐近理论不再有效,并可能导致错误的结论。本文建立了随机效应参数的ML估计量在一般情况下的渐近性质,可用于对固定数量的聚类进行有效的统计推断。我们的渐近定理允许固定效应和随机效应被错误指定,并且这两种效应的维度随着样本量的增大而趋于无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信