Topologically stable and persistent points of group actions

Pub Date : 2023-02-20 DOI:10.7146/math.scand.a-134098
A. G. Khan, T. Das
{"title":"Topologically stable and persistent points of group actions","authors":"A. G. Khan, T. Das","doi":"10.7146/math.scand.a-134098","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce topologically stable points, persistent points, persistent property, persistent measures and almost persistent measures for first countable Hausdorff group actions of compact metric spaces. We prove that the set of all persistent points is measurable and it is closed if the action is equicontinuous. We also prove that the set of all persistent measures is a convex set and every almost persistent measure is a persistent measure. Finally, we prove that every equicontinuous pointwise topologically stable first countable Hausdorff group action of a compact metric space is persistent. In particular, every equicontinuous pointwise topologically stable flow is persistent.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-134098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce topologically stable points, persistent points, persistent property, persistent measures and almost persistent measures for first countable Hausdorff group actions of compact metric spaces. We prove that the set of all persistent points is measurable and it is closed if the action is equicontinuous. We also prove that the set of all persistent measures is a convex set and every almost persistent measure is a persistent measure. Finally, we prove that every equicontinuous pointwise topologically stable first countable Hausdorff group action of a compact metric space is persistent. In particular, every equicontinuous pointwise topologically stable flow is persistent.
分享
查看原文
群行为的拓扑稳定和持久点
本文引入紧度量空间的第一可数Hausdorff群作用的拓扑稳定点、持续点、持续性质、持续测度和几乎持续测度。我们证明了所有持久点的集合是可测量的,并且当作用是等连续时,它是封闭的。我们还证明了所有持久测度的集合是凸集,所有几乎持久测度都是持久测度。最后,我们证明了紧度量空间上的每一个等连续点拓扑稳定第一可数Hausdorff群作用是持久的。特别地,每一个等连续的点拓扑稳定流都是持久的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信