On the divergence of two subseries $\ldots$] {on the divergence of two subseries of $\sum\frac{1}{p}$, and theorems of de La Vall\'{e}e Poussin and Landau-Walfis
{"title":"On the divergence of two subseries $\\ldots$] {on the divergence of two subseries of $\\sum\\frac{1}{p}$, and theorems of de La Vall\\'{e}e Poussin and Landau-Walfis","authors":"G. Reddy, S. Rau, B. Uma","doi":"10.5269/bspm.50820","DOIUrl":null,"url":null,"abstract":"Let $K=Q(\\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\\sum\\limits_{(\\frac{d}{p})=+1,_{p~ prime}}\\frac{1}{p}$ and $\\sum\\limits_{(\\frac{d}{q})=-1,_{q~ prime}}\\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\\neq 0$(de la Vall\\'{e}e Poussin's Theorem).We prove that the series $\\sum\\limits_{(\\frac{d}{p})=+1,_{p~ prime}}\\frac{1}{p^{s}}$ and $\\sum\\limits_{(\\frac{d}{q})=-1,_{q~ prime}}\\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.50820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove that the series $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p^{s}}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q^{s}}$ have singularities on all the imaginary axis(analogue of Landau-Walfisz theorem)
关于$\sum\frac{1}{p}$的两个子级数的散度,以及de La Vall\ {e}e Poussin和Landau-Walfis的定理
设$K=Q(\sqrt{d})$是具有判别式$d$的二次域。结果表明,$\sum\limits_{(\frac{d}{p})=+1,_{p~prime}}\frac{1}{p}$和$\sum\limits_{。给出了两种不同的方法来显示分歧:一种使用Dedekind-Zeta函数,另一种使用Tauberian方法。结果表明,这两个发散是等价的。结果表明,散度等价于$L_{d}(1)\neq0$(de la Vall){e}ePoussin定理)。我们证明了序列$\sum\limits_{(\frac{d}{p})=+1,_{p~素数}}\frac{1}{p^{s}$和$\sum\limits_{q~素数}}\frag{1}{q^{s}}$在所有虚轴上都具有奇点(类似于Landau-Wallfisz定理)