{"title":"Experimental and simulated research on the ballistic performance of Ti/Al3Ti laminate composites","authors":"Yang Cao, Siyuan Zhao, Limin Sun, W. He, Jun Ma","doi":"10.1177/2633366X20920884","DOIUrl":null,"url":null,"abstract":"The metal-intermetallic laminate composite Ti/Al3Ti can be used as protective armor in aerospace and military applications, due to its low density, high strength, and superior impact-resistant performance. The ballistic performance of the laminate composite was studied by ballistic testing and finite element technology. The failure modes, such as radical cracks, layer delamination, and plastic deformation, have been found after the ballistic test, and the specific energy absorption was used to evaluate the ballistic capacity of the material. The finite element model of the Ti/Al3Ti impacted by the projectile was established by considering the interface, which was simulated by the solid elements with zero thickness. The simulation results demonstrate the failure process of the interface during penetration. The interfacial failure allowed for layer detachment with its labor layers. The simulation results agree well with that of the experiment, and the practicality and credibility of the model is verified.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20920884","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20920884","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2
Abstract
The metal-intermetallic laminate composite Ti/Al3Ti can be used as protective armor in aerospace and military applications, due to its low density, high strength, and superior impact-resistant performance. The ballistic performance of the laminate composite was studied by ballistic testing and finite element technology. The failure modes, such as radical cracks, layer delamination, and plastic deformation, have been found after the ballistic test, and the specific energy absorption was used to evaluate the ballistic capacity of the material. The finite element model of the Ti/Al3Ti impacted by the projectile was established by considering the interface, which was simulated by the solid elements with zero thickness. The simulation results demonstrate the failure process of the interface during penetration. The interfacial failure allowed for layer detachment with its labor layers. The simulation results agree well with that of the experiment, and the practicality and credibility of the model is verified.
期刊介绍:
Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.