H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo
{"title":"Equality of critical parameters for percolation of Gaussian free field level sets","authors":"H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo","doi":"10.1215/00127094-2022-0017","DOIUrl":null,"url":null,"abstract":"We consider level-sets of the Gaussian free field on $\\mathbb Z^d$, for $d\\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \\bar h(d)$ for any $d \\geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 44
Abstract
We consider level-sets of the Gaussian free field on $\mathbb Z^d$, for $d\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \bar h(d)$ for any $d \geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.