Equality of critical parameters for percolation of Gaussian free field level sets

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo
{"title":"Equality of critical parameters for percolation of Gaussian free field level sets","authors":"H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo","doi":"10.1215/00127094-2022-0017","DOIUrl":null,"url":null,"abstract":"We consider level-sets of the Gaussian free field on $\\mathbb Z^d$, for $d\\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \\bar h(d)$ for any $d \\geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 44

Abstract

We consider level-sets of the Gaussian free field on $\mathbb Z^d$, for $d\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \bar h(d)$ for any $d \geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.
高斯自由场水平集渗流临界参数的相等性
我们考虑$\mathbb Z^d$上的高斯自由场的水平集,对于$d\geq 3$,高于给定的实值高度参数$h$。随着$h$的变化,这定义了一个具有强代数衰减相关性的规范渗透模型。我们证明了与该模型相关的三个自然临界参数,即$h_{**}(d)$, $h_{*}(d)$和$\bar h(d)$,分别描述了有序的亚临界阶段,无限簇的出现和超临界阶段局部唯一性区域的开始,实际上是重合的,即$h_{**}(d)=h_{*}(d)= \bar h(d)$对于任何$d \geq 3$。我们证明的核心是一个新的插值方案,旨在积分出高斯自由场的远程依赖。这一策略的成功实施广泛依赖于某些新的重整化技术,特别是控制所谓的大场效应。这种方法为完全理解强相关渗流模型的非临界阶段开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信