Coloring Bipartite Graphs with Semi-small List Size

Pub Date : 2023-01-29 DOI:10.1007/s00026-022-00633-z
Daniel G. Zhu
{"title":"Coloring Bipartite Graphs with Semi-small List Size","authors":"Daniel G. Zhu","doi":"10.1007/s00026-022-00633-z","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Alon, Cambie, and Kang introduced asymmetric list coloring of bipartite graphs, where the size of each vertex’s list depends on its part. For complete bipartite graphs, we fix the list sizes of one part and consider the resulting asymptotics, revealing an invariant quantity instrumental in determining choosability across most of the parameter space. By connecting this quantity to a simple question on independent sets of hypergraphs, we strengthen bounds when a part has list size 2. Finally, we state via our framework a conjecture on general bipartite graphs, unifying three conjectures of Alon–Cambie–Kang.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00633-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00633-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, Alon, Cambie, and Kang introduced asymmetric list coloring of bipartite graphs, where the size of each vertex’s list depends on its part. For complete bipartite graphs, we fix the list sizes of one part and consider the resulting asymptotics, revealing an invariant quantity instrumental in determining choosability across most of the parameter space. By connecting this quantity to a simple question on independent sets of hypergraphs, we strengthen bounds when a part has list size 2. Finally, we state via our framework a conjecture on general bipartite graphs, unifying three conjectures of Alon–Cambie–Kang.

Abstract Image

分享
查看原文
具有半小列表大小的二分图的着色
最近,Alon、Cambie和Kang介绍了二分图的非对称列表着色,其中每个顶点的列表大小取决于其部分。对于完全二分图,我们固定了一部分的列表大小,并考虑了由此产生的渐近性,揭示了一个不变量,它有助于确定大部分参数空间的可选择性。通过将这个量与超图独立集上的一个简单问题联系起来,当一个部分的列表大小为2时,我们加强了边界。最后,我们通过我们的框架陈述了关于一般二部图的一个猜想,统一了Alon–Cambie–Kang的三个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信