Minimal surfaces and Schwarz lemma

Pub Date : 2023-05-01 DOI:10.1016/j.indag.2023.01.002
David Kalaj
{"title":"Minimal surfaces and Schwarz lemma","authors":"David Kalaj","doi":"10.1016/j.indag.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a sharp Schwarz lemma type inequality for the Weierstrass–Enneper parameterization of minimal disks. It states the following. If <span><math><mrow><mi>F</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>Σ</mi></mrow></math></span> is a conformal harmonic parameterization of a minimal disk <span><math><mrow><mi>Σ</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, where <span><math><mi>D</mi></math></span> is the unit disk and <span><math><mrow><mrow><mo>|</mo><mi>Σ</mi><mo>|</mo></mrow><mo>=</mo><mi>π</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, then <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>|</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>≤</mo><mi>R</mi></mrow></math></span>. If for some <span><math><mi>z</mi></math></span> the previous inequality is equality, then the surface is an affine image of a disk, and <span><math><mi>F</mi></math></span><span> is linear up to a Möbius transformation of the unit disk.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We prove a sharp Schwarz lemma type inequality for the Weierstrass–Enneper parameterization of minimal disks. It states the following. If F:DΣ is a conformal harmonic parameterization of a minimal disk ΣR3, where D is the unit disk and |Σ|=πR2, then |Fx(z)|(1|z|2)R. If for some z the previous inequality is equality, then the surface is an affine image of a disk, and F is linear up to a Möbius transformation of the unit disk.

分享
查看原文
极小曲面与Schwarz引理
我们证明了最小盘的Weierstrass-Enneper参数化的尖锐Schwarz引理型不等式。它陈述如下。若F:D→Σ是最小盘的共形调和参数化Σ∧R3,其中D为单位盘,|Σ|=πR2,则|Fx(z)|(1−|z|2)≤R。如果对于某个z,前面的不等式是相等的,那么曲面是一个圆盘的仿射像,F是线性的,直到单位圆盘的Möbius变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信