A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity

Pub Date : 2022-12-08 DOI:10.1007/s10463-022-00856-0
Zeyu Wu, Cheng Wang, Weidong Liu
{"title":"A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity","authors":"Zeyu Wu,&nbsp;Cheng Wang,&nbsp;Weidong Liu","doi":"10.1007/s10463-022-00856-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00856-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00856-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.

Abstract Image

分享
查看原文
弱稀疏性下基于稀疏列逆算子的统一精度矩阵估计框架
在弱稀疏性条件下,我们估计了高维精度矩阵,其中许多项接近于零。我们重新研究了稀疏列逆算子估计,并推导了它在弱稀疏条件下的一般误差界。建立了一个统一的框架来处理各种情况,包括重尾数据、非异常数据和矩阵变量数据。这些新方法可以达到与现有方法相同的收敛速度,并且可以有效地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信