Credibility Assessment of Machine Learning in a Manufacturing Process Application

IF 0.5 Q4 ENGINEERING, MECHANICAL
G. Banyay, Clarence Worrell, S. E. Sidener, Joshua S. Kaizer
{"title":"Credibility Assessment of Machine Learning in a Manufacturing Process Application","authors":"G. Banyay, Clarence Worrell, S. E. Sidener, Joshua S. Kaizer","doi":"10.1115/1.4051717","DOIUrl":null,"url":null,"abstract":"\n We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.
机器学习在制造过程应用中的可信度评估
我们提出了一个框架,用于建立机器学习(ML)模型的可信度,该模型用于预测关键过程控制变量设置,以最大限度地提高组件制造应用中的产品质量。我们的模型将纯粹基于数据的ML模型与基于物理的调整相结合,该调整编码了物理过程的主题专业知识。建立结果模型的可信度为消除先前用于确定控制变量设置的昂贵的中间测试过程提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信