Periodic Jacobi operators with complex coefficients

IF 1 3区 数学 Q1 MATHEMATICS
V. Papanicolaou
{"title":"Periodic Jacobi operators with complex coefficients","authors":"V. Papanicolaou","doi":"10.4171/JST/357","DOIUrl":null,"url":null,"abstract":"We present certain results on the direct and inverse spectral theory of the Jacobi operator with complex periodic coefficients. For instance, we show that any $N$-th degree polynomial whose leading coefficient is $(-1)^N$ is the Hill discriminant of finitely many discrete $N$-periodic Schr\\\"{o}dinger operators (Theorem 1). Also, in the case where the spectrum is a closed interval we prove a result (Theorem 5) which is the analog of Borg's Theorem for the non-self-adjoint Jacobi case.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JST/357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We present certain results on the direct and inverse spectral theory of the Jacobi operator with complex periodic coefficients. For instance, we show that any $N$-th degree polynomial whose leading coefficient is $(-1)^N$ is the Hill discriminant of finitely many discrete $N$-periodic Schr\"{o}dinger operators (Theorem 1). Also, in the case where the spectrum is a closed interval we prove a result (Theorem 5) which is the analog of Borg's Theorem for the non-self-adjoint Jacobi case.
复系数周期Jacobi算子
给出了具有复周期系数的雅可比算子的正逆谱理论的若干结果。例如,我们证明了任何N阶多项式,其前导系数为$(-1)^N$是有限个离散的$N$周期Schr\ {o}dinger算子的Hill判判式(定理1)。此外,在谱是闭区间的情况下,我们证明了一个结果(定理5),它是非自伴随Jacobi情况下Borg定理的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spectral Theory
Journal of Spectral Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
0.00%
发文量
30
期刊介绍: The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome. The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory. Schrödinger operators, scattering theory and resonances; eigenvalues: perturbation theory, asymptotics and inequalities; quantum graphs, graph Laplacians; pseudo-differential operators and semi-classical analysis; random matrix theory; the Anderson model and other random media; non-self-adjoint matrices and operators, including Toeplitz operators; spectral geometry, including manifolds and automorphic forms; linear and nonlinear differential operators, especially those arising in geometry and physics; orthogonal polynomials; inverse problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信