{"title":"The products of involutions in a matrix centralizer","authors":"Ralph John de la Cruz, Raymond Louis Tañedo","doi":"10.13001/ela.2022.7091","DOIUrl":null,"url":null,"abstract":"A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \\in \\mathscr{C}(S)$ to be a product of involutions in $\\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{C}(S)$ to be a product of involutions in $\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.