The products of involutions in a matrix centralizer

Pub Date : 2022-08-20 DOI:10.13001/ela.2022.7091
Ralph John de la Cruz, Raymond Louis Tañedo
{"title":"The products of involutions in a matrix centralizer","authors":"Ralph John de la Cruz, Raymond Louis Tañedo","doi":"10.13001/ela.2022.7091","DOIUrl":null,"url":null,"abstract":"A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \\in \\mathscr{C}(S)$ to be a product of involutions in $\\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A square matrix $A$ is an involution if $A^{2} = I$. The centralizer of a square matrix $S$ denoted by $\mathscr{C}(S)$ is the set of all $A$ such that $AS = SA$ over an algebraically closed field of characteristic not equal to 2. We determine necessary and sufficient conditions for $A \in \mathscr{C}(S)$ to be a product of involutions in $\mathscr{C}(S)$ where $S$ is a basic Weyr matrix with homogeneous Weyr structure of length 3. Finally, we will show some results for the case when the length of the Weyr structure is greater than 3.
分享
查看原文
矩阵扶正器中对合的乘积
一个方阵$A$是一个对合矩阵,如果$A^{2} = I$。用$\mathscr{C}(S)$表示的方阵$S$的中心化器是在特征不等于2的代数闭域上满足$AS = SA$的所有$ a $的集合。我们确定了$A \in \mathscr{C}(S)$是$\mathscr{C}(S)$的对合积的充要条件,其中$S$是一个长度为3的齐次Weyr结构的基本Weyr矩阵。最后,我们将给出Weyr结构长度大于3时的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信