Combination of Cross Stage Partial Network and GhostNet with Spatial Pyramid Pooling on Yolov4 for Detection of Acute Lymphoblastic Leukemia Subtypes in Multi-Cell Blood Microscopic Image

T. Mustaqim, C. Fatichah, N. Suciati
{"title":"Combination of Cross Stage Partial Network and GhostNet with Spatial Pyramid Pooling on Yolov4 for Detection of Acute Lymphoblastic Leukemia Subtypes in Multi-Cell Blood Microscopic Image","authors":"T. Mustaqim, C. Fatichah, N. Suciati","doi":"10.15294/sji.v9i2.37350","DOIUrl":null,"url":null,"abstract":"Purpose: Acute Lymphoblastic Leukemia (ALL) Detection with microscopic blood images can use a deep learning-based object detection model to localize and classify ALL cell subtypes. Previous studies only performed single cell-based detection objects or binary classification with leukemia and normal classes. Detection of ALL subtypes is crucial to support early diagnosis and treatment. Therefore, an object detection model is needed to detect ALL subtypes in multi-cell blood microscopic images.Methods: This study focuses on detecting the ALL subtype using YOLOV4 with a modified neck using Cross Stage Partial Network (CSPNet) and GhostNet. CSPNet is combined with Spatial Pyramid Pooling (SPP) to become SPPCSP to get various features map before the YOLOv4 final layer. Ghostnet was used to reduce the computation time of the modified YOLOV4 neck.Result: Experimental results show that YOLOv4 SPPCSP outperformed the recall value of 14.6%, the value of mAP@.5 0.8%, and reduced the computation time by 4.7 ms compared to the original YOLOv4.Novelty: The combination of CSPNet and GhostNet for YOLOV4 neck modification can increase the variety of features map and reduce computing time compared to the Original YOLOv4.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v9i2.37350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: Acute Lymphoblastic Leukemia (ALL) Detection with microscopic blood images can use a deep learning-based object detection model to localize and classify ALL cell subtypes. Previous studies only performed single cell-based detection objects or binary classification with leukemia and normal classes. Detection of ALL subtypes is crucial to support early diagnosis and treatment. Therefore, an object detection model is needed to detect ALL subtypes in multi-cell blood microscopic images.Methods: This study focuses on detecting the ALL subtype using YOLOV4 with a modified neck using Cross Stage Partial Network (CSPNet) and GhostNet. CSPNet is combined with Spatial Pyramid Pooling (SPP) to become SPPCSP to get various features map before the YOLOv4 final layer. Ghostnet was used to reduce the computation time of the modified YOLOV4 neck.Result: Experimental results show that YOLOv4 SPPCSP outperformed the recall value of 14.6%, the value of mAP@.5 0.8%, and reduced the computation time by 4.7 ms compared to the original YOLOv4.Novelty: The combination of CSPNet and GhostNet for YOLOV4 neck modification can increase the variety of features map and reduce computing time compared to the Original YOLOv4.
交叉阶段部分网络和鬼网结合Yolov4空间金字塔池检测急性淋巴细胞白血病多细胞显微图像
目的:急性淋巴细胞白血病(Acute Lymphoblastic Leukemia, ALL)显微血液图像检测可以利用基于深度学习的目标检测模型对ALL细胞亚型进行定位和分类。以前的研究只进行了基于单细胞的检测对象或白血病和正常类别的二元分类。检测ALL亚型对于支持早期诊断和治疗至关重要。因此,需要一个目标检测模型来检测多细胞血液显微图像中的ALL亚型。方法:采用改良颈部的YOLOV4,采用跨阶段部分网络(Cross Stage Partial Network, CSPNet)和GhostNet检测ALL亚型。CSPNet与空间金字塔池(Spatial Pyramid Pooling, SPP)相结合成为SPPCSP,在YOLOv4最后一层之前得到各种特征映射。使用Ghostnet来减少改进的YOLOV4颈部的计算时间。结果:实验结果表明,YOLOv4 SPPCSP的召回值优于mAP@.的召回值14.6%与原来的YOLOv4相比,减少了4.7 ms的计算时间。新颖性:结合CSPNet和GhostNet对YOLOV4颈部进行修改,与原来的YOLOV4相比,增加了特征映射的多样性,减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信