A lifecycle cost model considering both component and system burn-in for operationally unrepairable systems

IF 2.7 Q2 MANAGEMENT
Kah How Teo, K. Tai, V. Schena, L. Simonini
{"title":"A lifecycle cost model considering both component and system burn-in for operationally unrepairable systems","authors":"Kah How Teo, K. Tai, V. Schena, L. Simonini","doi":"10.1108/ijqrm-03-2021-0073","DOIUrl":null,"url":null,"abstract":"PurposeThis study presents a lifecycle cost model considering multi-level burn-in for operationally unrepairable systems including assembly and warranty costs. A numerical method to obtain system reliability under component replacement during burn-in is also presented with derived error bounds.Design/methodology/approachThe final system reliability after component and system burn-in is obtained and warranty costs are computed. On failure during operation, the system is replaced with another that undergoes an identical burn-in procedure. Cost behaviours for a small and large system are shown in a numerical example.FindingsThere are more cost savings when system burn-in is conducted for a large system whereas a strategy focusing on component burn-in only can also result in cost savings for small systems. In addition, a minimum system burn-in duration is required before cost savings are achieved for these operationally unrepairable systems.Originality/valueThe operationally unrepairable system is a niche class of systems which small satellites fall under and no such study has been conducted before. The authors present a different approach towards the testing of small satellites for a constellation mission.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-03-2021-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThis study presents a lifecycle cost model considering multi-level burn-in for operationally unrepairable systems including assembly and warranty costs. A numerical method to obtain system reliability under component replacement during burn-in is also presented with derived error bounds.Design/methodology/approachThe final system reliability after component and system burn-in is obtained and warranty costs are computed. On failure during operation, the system is replaced with another that undergoes an identical burn-in procedure. Cost behaviours for a small and large system are shown in a numerical example.FindingsThere are more cost savings when system burn-in is conducted for a large system whereas a strategy focusing on component burn-in only can also result in cost savings for small systems. In addition, a minimum system burn-in duration is required before cost savings are achieved for these operationally unrepairable systems.Originality/valueThe operationally unrepairable system is a niche class of systems which small satellites fall under and no such study has been conducted before. The authors present a different approach towards the testing of small satellites for a constellation mission.
考虑部件和系统老化的不可维修系统生命周期成本模型
目的本研究提出了一个生命周期成本模型,考虑了不可维修系统的多级老化,包括组装和保修成本。给出了一种在老化过程中部件更换情况下获得系统可靠性的数值方法,并导出了误差界。设计/方法/方法获得部件和系统老化后的最终系统可靠性,并计算保修成本。在运行过程中出现故障时,系统会被另一个经过相同老化程序的系统所取代。数值示例显示了小型和大型系统的成本行为。发现当对大型系统进行系统老化时,可以节省更多的成本,而只关注组件老化的策略也可以为小型系统节省成本。此外,在这些操作上不可修复的系统实现成本节约之前,需要最短的系统老化持续时间。独创性/价值可操作的不可修复系统是小型卫星所属的一类小众系统,以前从未进行过此类研究。作者提出了一种不同的方法来测试用于星座任务的小型卫星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信