Strong convergence of the Euler-Maruyama approximation for SDEs with unbounded drift

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Akli O. L. Babi, M. Dieye, O. M. Pamen
{"title":"Strong convergence of the Euler-Maruyama approximation for SDEs with unbounded drift","authors":"Akli O. L. Babi, M. Dieye, O. M. Pamen","doi":"10.1080/07362994.2022.2047726","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we prove strong convergence on small time interval of order for arbitrarily small of the Euler-Maruyama approximation for additive Brownian motion with Hölder continuous drift satisfying a linear growth condition. The proof is based on direct estimations of functional of the Euler-Maruyama approximation. The order of convergence does not depend on the Hölder index of the drift, thus generalizing the results obtained in [10] to both Linear growth and to an optimal convergence order.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"545 - 563"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2047726","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, we prove strong convergence on small time interval of order for arbitrarily small of the Euler-Maruyama approximation for additive Brownian motion with Hölder continuous drift satisfying a linear growth condition. The proof is based on direct estimations of functional of the Euler-Maruyama approximation. The order of convergence does not depend on the Hölder index of the drift, thus generalizing the results obtained in [10] to both Linear growth and to an optimal convergence order.
具有无界漂移的SDEs的Euler-Maruyama近似的强收敛性
摘要本文证明了具有Hölder连续漂移的加性布朗运动的Euler-Maruyama近似在满足线性增长条件的任意小阶时间区间上的强收敛性。证明是基于欧拉-丸山近似的泛函的直接估计。收敛阶不依赖于漂移的Hölder指数,从而将[10]中得到的结果推广到线性增长和最优收敛阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信