Mathematical analysis of toxin-phytoplankton-fish model with self-diffusion and cross-diffusion

Q2 Agricultural and Biological Sciences
Hamidou Ouedraogo, Wendkouni Ouedraogo, B. Sangaré
{"title":"Mathematical analysis of toxin-phytoplankton-fish model with self-diffusion and cross-diffusion","authors":"Hamidou Ouedraogo, Wendkouni Ouedraogo, B. Sangaré","doi":"10.11145/j.biomath.2019.11.237","DOIUrl":null,"url":null,"abstract":"In this paper  we propose a nonlinear reaction-diffusion system  describing the interaction between toxin-producing phytoplankton and fish population. We analyze the effect of self- and cross-diffusion on the dynamics of the system. The existence, uniqueness and uniform boundedness of solutions are established in the positive octant. The system is analyzed for various interesting dynamical behaviors which include boundedness, persistence, local stability, global stability around each equilibria based on some conditions on self-  and cross-diffusion coefficients.  The analytical findings are verified by numerical simulation.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2019.11.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper  we propose a nonlinear reaction-diffusion system  describing the interaction between toxin-producing phytoplankton and fish population. We analyze the effect of self- and cross-diffusion on the dynamics of the system. The existence, uniqueness and uniform boundedness of solutions are established in the positive octant. The system is analyzed for various interesting dynamical behaviors which include boundedness, persistence, local stability, global stability around each equilibria based on some conditions on self-  and cross-diffusion coefficients.  The analytical findings are verified by numerical simulation.
具有自扩散和交叉扩散的毒素浮游植物鱼类模型的数学分析
本文提出了一个非线性反应扩散系统来描述产毒浮游植物和鱼类种群之间的相互作用。我们分析了自扩散和交叉扩散对系统动力学的影响。在正八进制中建立了解的存在性、唯一性和一致有界性。基于自扩散系数和交叉扩散系数的一些条件,分析了系统的各种有趣的动力学行为,包括有界性、持久性、局部稳定性、每个平衡点周围的全局稳定性。数值模拟验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信