Haoshan Li, Xiao-ming Zheng, Yan Liu, Jing Tian, Jiejian Kou, Junzhuo Shi, Xiao-bin Pang, Xin-Mei Xie, Yu Yan
{"title":"L-Carnitine Alleviates the Myocardial Infarction and Left Ventricular Remodeling through Bax/Bcl-2 Signal Pathway","authors":"Haoshan Li, Xiao-ming Zheng, Yan Liu, Jing Tian, Jiejian Kou, Junzhuo Shi, Xiao-bin Pang, Xin-Mei Xie, Yu Yan","doi":"10.1155/2022/9615674","DOIUrl":null,"url":null,"abstract":"Purpose L-carnitine (LC) is considered to have good therapeutic potential for myocardial infarction (MI), but its mechanism has not been clarified. The aim of the study is to elucidate the cardioprotective effects of LC in mice following MI and related mechanisms. Methods ICR mice were treated with LC for 2 weeks after induction of MI with ligation of left anterior descending artery. Electrocardiographic (ECG) recording and echocardiography were used to evaluate cardiac function. H&E staining, TTC staining, and Masson staining were performed for morphological analysis and cardiac fibrosis. ELISA and immunofluorescence were utilized to detect biomarkers and inflammatory mediators. The key proteins in the Bax/Bcl-2 signaling pathway were also examined by Western blot. Results Both echocardiography and histological measurement showed an improvement in cardiac function and morphology. Biomarkers such as LDH, NT-proBNP, cTnT, and AST, as well as the inflammatory cytokines IL-1β, IL-6, and TNF-α, were decreased in plasma of mice receiving LC treatment after myocardial injury. In addition, the expression of α-SMA as well as the key proteins in the Bax/Bcl-2 signaling pathway in cardiac myocardium were much lower in mice with LC treatment compared to those without after MI. Conclusions Our data suggest that LC can effectively ameliorate left ventricular (LV) remodeling after MI, and its beneficial effects on myocardial function and remodeling may be attributable at least in part to anti-inflammatory and inhibition of the Bax/Bcl-2 apoptotic signaling pathway.","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/9615674","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose L-carnitine (LC) is considered to have good therapeutic potential for myocardial infarction (MI), but its mechanism has not been clarified. The aim of the study is to elucidate the cardioprotective effects of LC in mice following MI and related mechanisms. Methods ICR mice were treated with LC for 2 weeks after induction of MI with ligation of left anterior descending artery. Electrocardiographic (ECG) recording and echocardiography were used to evaluate cardiac function. H&E staining, TTC staining, and Masson staining were performed for morphological analysis and cardiac fibrosis. ELISA and immunofluorescence were utilized to detect biomarkers and inflammatory mediators. The key proteins in the Bax/Bcl-2 signaling pathway were also examined by Western blot. Results Both echocardiography and histological measurement showed an improvement in cardiac function and morphology. Biomarkers such as LDH, NT-proBNP, cTnT, and AST, as well as the inflammatory cytokines IL-1β, IL-6, and TNF-α, were decreased in plasma of mice receiving LC treatment after myocardial injury. In addition, the expression of α-SMA as well as the key proteins in the Bax/Bcl-2 signaling pathway in cardiac myocardium were much lower in mice with LC treatment compared to those without after MI. Conclusions Our data suggest that LC can effectively ameliorate left ventricular (LV) remodeling after MI, and its beneficial effects on myocardial function and remodeling may be attributable at least in part to anti-inflammatory and inhibition of the Bax/Bcl-2 apoptotic signaling pathway.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.