Understanding Gardar Sahlberg with neural nets: On algorithmic reuse of the Swedish SF archive

IF 0.1 0 FILM, RADIO, TELEVISION
Maria Eriksson, Tomas Skotare, P. Snickars
{"title":"Understanding Gardar Sahlberg with neural nets: On algorithmic reuse of the Swedish SF archive","authors":"Maria Eriksson, Tomas Skotare, P. Snickars","doi":"10.1386/jsca_00075_1","DOIUrl":null,"url":null,"abstract":"In this article, we re-trace the history of the Swedish SF archive and reflect on how this collection of historic newsreels has been reappropriated and remixed throughout more recent media history. In particular, we focus on the work of director and film historian Gardar Sahlberg, who made extensive use of the SF archive, first in a series of documentary films, then in a number of historical TV programmes. We are interested in how historic film footage travels and circulates through time, but foremost we explore how algorithms can help identify instances of audio-visual reuse in large datasets. Hence the article discusses algorithmic ways of examining archival film reuse, introducing a method for mapping video reuse with the help of artificial intelligence or more precisely machine learning that uses so-called convolutional neural nets. The article presents the Video Reuse Detector (VRD), a tool that uses machine learning to identify visual similarities within a given audio-visual database such as the SF archive.","PeriodicalId":42248,"journal":{"name":"Journal of Scandinavian Cinema","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scandinavian Cinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1386/jsca_00075_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"FILM, RADIO, TELEVISION","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we re-trace the history of the Swedish SF archive and reflect on how this collection of historic newsreels has been reappropriated and remixed throughout more recent media history. In particular, we focus on the work of director and film historian Gardar Sahlberg, who made extensive use of the SF archive, first in a series of documentary films, then in a number of historical TV programmes. We are interested in how historic film footage travels and circulates through time, but foremost we explore how algorithms can help identify instances of audio-visual reuse in large datasets. Hence the article discusses algorithmic ways of examining archival film reuse, introducing a method for mapping video reuse with the help of artificial intelligence or more precisely machine learning that uses so-called convolutional neural nets. The article presents the Video Reuse Detector (VRD), a tool that uses machine learning to identify visual similarities within a given audio-visual database such as the SF archive.
用神经网络理解Gardar Sahlberg:瑞典SF档案的算法重用
在这篇文章中,我们重新追溯了瑞典科幻档案的历史,并反思了这些历史新闻纪录片是如何在最近的媒体历史中被重新挪用和重新混合的。我们特别关注导演和电影历史学家加尔达·萨尔伯格(Gardar Sahlberg)的工作,他首先在一系列纪录片中广泛使用了SF档案,然后在一些历史电视节目中使用。我们对历史电影片段如何在时间中传播和循环感兴趣,但最重要的是我们探索算法如何帮助识别大型数据集中的视听重用实例。因此,本文讨论了检查档案电影重用的算法方法,介绍了一种借助人工智能或更准确地说是使用所谓的卷积神经网络的机器学习来映射视频重用的方法。本文介绍了视频重用检测器(VRD),这是一种使用机器学习来识别给定视听数据库(如SF档案)中视觉相似性的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scandinavian Cinema
Journal of Scandinavian Cinema FILM, RADIO, TELEVISION-
CiteScore
0.40
自引率
33.30%
发文量
8
期刊介绍: Journal of Scandinavian Cinema is a scholarly journal devoted to excellent research and stimulating discussion focusing on the cinemas of Denmark, Finland, Iceland, Norway and Sweden, both within their national and Nordic contexts, and as transnational cinemas in a globalized world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信