Machine Learning Algorithms for Automatic Anomalies Detection in Data Storage Systems Operation

Q3 Engineering
M. Hushchyn, A. Sapronov, A. Ustyuzhanin
{"title":"Machine Learning Algorithms for Automatic Anomalies Detection in Data Storage Systems Operation","authors":"M. Hushchyn, A. Sapronov, A. Ustyuzhanin","doi":"10.25728/ASSA.2019.19.2.725","DOIUrl":null,"url":null,"abstract":"Data storage reliability and availability play important role for a wide range of services and business processes. Manufacturers provide data storage systems that resistant to hardware and software failures but not for all cases. Well-timed detection of these failures help to recover the system faster and prevent the failures before they occur. In this work a range of machine learning and time series analysis algorithms for failures detection is considered. The algorithms are applied and compared on the real data storage system. Preliminary results show that binary classification methods demonstrate high failure detection and low false alarm rates. Time series prediction based approach shows similar results and outperforms one-class classification methods.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"19 1","pages":"23-32"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2019.19.2.725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Data storage reliability and availability play important role for a wide range of services and business processes. Manufacturers provide data storage systems that resistant to hardware and software failures but not for all cases. Well-timed detection of these failures help to recover the system faster and prevent the failures before they occur. In this work a range of machine learning and time series analysis algorithms for failures detection is considered. The algorithms are applied and compared on the real data storage system. Preliminary results show that binary classification methods demonstrate high failure detection and low false alarm rates. Time series prediction based approach shows similar results and outperforms one-class classification methods.
用于数据存储系统操作中异常自动检测的机器学习算法
数据存储的可靠性和可用性在广泛的服务和业务流程中发挥着重要作用。制造商提供的数据存储系统能够抵抗硬件和软件故障,但并非适用于所有情况。及时检测这些故障有助于更快地恢复系统,并在故障发生之前预防故障。在这项工作中,考虑了一系列用于故障检测的机器学习和时间序列分析算法。并在实际数据存储系统中进行了应用和比较。初步结果表明,二进制分类方法具有较高的故障检测率和较低的误报率。基于时间序列预测的方法显示出相似的结果,并且优于单类分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信