{"title":"Thermal Energy Feedback Regulation of Human Life System Based on Photon Radiation","authors":"Q. Jin, Zhan Liu","doi":"10.13052/spee1048-5236.4112","DOIUrl":null,"url":null,"abstract":"To solve the problem of the long execution time of the traditional thermal energy feedback regulation mechanism of human life system, a method of analyzing the thermal energy feedback regulation mechanism of human life system based on photonic radiation was proposed. The energy response entropy of human living system is calculated by analyzing the change of human living system’s thermal energy. The photonic counter is designed by using photonic radiation technology to extract the weak optical signal of thermal energy of the system and output energy accumulation. The quadratic programming algorithm is used to solve the optimal solution of thermal energy, and the neural network model is combined with the energy accumulation of photon counter to realize the thermal feedback regulation. So far, the design of energy feedback regulation mechanism of human living system has been completed. The experimental results show that compared with the traditional feedback control mechanism, the designed energy feedback control mechanism based on photonic radiation has a shorter implementation time and is suitable for practical engineering.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem of the long execution time of the traditional thermal energy feedback regulation mechanism of human life system, a method of analyzing the thermal energy feedback regulation mechanism of human life system based on photonic radiation was proposed. The energy response entropy of human living system is calculated by analyzing the change of human living system’s thermal energy. The photonic counter is designed by using photonic radiation technology to extract the weak optical signal of thermal energy of the system and output energy accumulation. The quadratic programming algorithm is used to solve the optimal solution of thermal energy, and the neural network model is combined with the energy accumulation of photon counter to realize the thermal feedback regulation. So far, the design of energy feedback regulation mechanism of human living system has been completed. The experimental results show that compared with the traditional feedback control mechanism, the designed energy feedback control mechanism based on photonic radiation has a shorter implementation time and is suitable for practical engineering.