An Alternative Estimation Method for Time-Varying Parameter Models

IF 1.1 Q3 ECONOMICS
Mikio Ito, Akihiko Noda, Tatsuma Wada
{"title":"An Alternative Estimation Method for Time-Varying Parameter Models","authors":"Mikio Ito, Akihiko Noda, Tatsuma Wada","doi":"10.3390/econometrics10020023","DOIUrl":null,"url":null,"abstract":"A multivariate, non-Bayesian, regression-based, or feasible generalized least squares (GLS)-based approach is proposed to estimate time-varying VAR parameter models. Although it has been known that the Kalman-smoothed estimate can be alternatively estimated using GLS for univariate models, we assess the accuracy of the feasible GLS estimator compared with commonly used Bayesian estimators. Unlike the maximum likelihood estimator often used together with the Kalman filter, it is shown that the possibility of the pile-up problem occurring is negligible. In addition, this approach enables us to deal with stochastic volatility models, models with a time-dependent variance–covariance matrix, and models with non-Gaussian errors that allow us to deal with abrupt changes or structural breaks in time-varying parameters.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics10020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

A multivariate, non-Bayesian, regression-based, or feasible generalized least squares (GLS)-based approach is proposed to estimate time-varying VAR parameter models. Although it has been known that the Kalman-smoothed estimate can be alternatively estimated using GLS for univariate models, we assess the accuracy of the feasible GLS estimator compared with commonly used Bayesian estimators. Unlike the maximum likelihood estimator often used together with the Kalman filter, it is shown that the possibility of the pile-up problem occurring is negligible. In addition, this approach enables us to deal with stochastic volatility models, models with a time-dependent variance–covariance matrix, and models with non-Gaussian errors that allow us to deal with abrupt changes or structural breaks in time-varying parameters.
时变参数模型的一种替代估计方法
提出了一种多变量、非贝叶斯、基于回归或可行广义最小二乘(GLS)的方法来估计时变VAR参数模型。虽然已知可以使用GLS对单变量模型进行卡尔曼平滑估计,但我们评估了可行GLS估计量与常用贝叶斯估计量的准确性。与通常与卡尔曼滤波一起使用的极大似然估计不同,它表明发生堆积问题的可能性可以忽略不计。此外,这种方法使我们能够处理随机波动模型,具有时变方差-协方差矩阵的模型,以及具有非高斯误差的模型,这些模型允许我们处理时变参数中的突变或结构中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信