F. Watteau, G. Séré, H. Huot, F. Rees, C. Schwartz, J. Morel
{"title":"Micropedology to reveal pedogenetic processes in Technosols","authors":"F. Watteau, G. Séré, H. Huot, F. Rees, C. Schwartz, J. Morel","doi":"10.3232/SJSS.2018.V8.N2.02","DOIUrl":null,"url":null,"abstract":"Technosols are characterized by the presence of mineral and organic parent materials of technogenic origin (e.g. agricultural or urban wastes, industrial by-products, building materials, transported natural materials). In view of the continual increase of such man-made soils, there is a true need of understanding their functioning and evolution. Micropedology, i.e. morphological and analytical characterization of pedofeatures on soil sections, appears as a relevant approach to take into account the diversity and the specificity of Technosols in the knowledge of their pedogenetic processes. Micropedology was investigated at microscopic and submicroscopic scale on four Technosols. Therefore, it determined specific features of anthropogenic constituents allowing in situ monitoring until the early stages of Technosol pedogenesis. Organic matter dynamics, soil porosity evolution, impact of faunal activity or hydric conditions on Technosol structure were investigated. Moreover, as Technosol components and deposition modes are diverse, one can expect numerous interfaces. In that way, micropedology appeared particularly well adapted to study these local interfaces as sites of favoured pedogenesis. Supplemented with overall physico-chemical soil analyses, characterization of Technosol pedogenic features using micropedology improves the understanding of their functioning and evolution. In addition, according to the environmental context, such data also give useful information for the Technosol management.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2018.V8.N2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 9
Abstract
Technosols are characterized by the presence of mineral and organic parent materials of technogenic origin (e.g. agricultural or urban wastes, industrial by-products, building materials, transported natural materials). In view of the continual increase of such man-made soils, there is a true need of understanding their functioning and evolution. Micropedology, i.e. morphological and analytical characterization of pedofeatures on soil sections, appears as a relevant approach to take into account the diversity and the specificity of Technosols in the knowledge of their pedogenetic processes. Micropedology was investigated at microscopic and submicroscopic scale on four Technosols. Therefore, it determined specific features of anthropogenic constituents allowing in situ monitoring until the early stages of Technosol pedogenesis. Organic matter dynamics, soil porosity evolution, impact of faunal activity or hydric conditions on Technosol structure were investigated. Moreover, as Technosol components and deposition modes are diverse, one can expect numerous interfaces. In that way, micropedology appeared particularly well adapted to study these local interfaces as sites of favoured pedogenesis. Supplemented with overall physico-chemical soil analyses, characterization of Technosol pedogenic features using micropedology improves the understanding of their functioning and evolution. In addition, according to the environmental context, such data also give useful information for the Technosol management.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.