Powered Inverse Rayleigh Distribution Using DUS Transformation

IF 0.7 Q2 MATHEMATICS
M. I. Khan, A. Mustafa
{"title":"Powered Inverse Rayleigh Distribution Using DUS Transformation","authors":"M. I. Khan, A. Mustafa","doi":"10.28924/2291-8639-21-2023-61","DOIUrl":null,"url":null,"abstract":"This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.
基于DUS变换的动力逆瑞利分布
本文通过DUS变换对幂逆瑞利分布进行了扩展,称为DUS幂逆瑞利(DUS-PIR)分布。建议分布的一些统计特性,特别是矩、模、分位数、阶统计量、熵、不等式测度和应力强度参数,已经得到了广泛的研究。为了估计参数,讨论了最大似然估计(MLE)。通过两个真实数据集验证了模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信