{"title":"Assessing the impact of the russian war in Ukraine on COVID-19 transmission in Spain: a machine learning-based study","authors":"D. Chumachenko, T. Dudkina, T. Chumachenko","doi":"10.32620/reks.2023.1.01","DOIUrl":null,"url":null,"abstract":"COVID-19 pandemic has significantly impacted the world, with millions of infections and deaths, healthcare systems overwhelmed, economies disrupted, and daily life changed. Simulation has been recognized as a valuable tool in combating the pandemic, helping to model the spread of the virus, evaluate the impact of interventions, and inform decision-making processes. The accuracy and effectiveness of simulations depend on the quality of the underlying data, assumptions, and modeling techniques. Ongoing efforts to improve and refine simulation approaches can enhance their value in addressing future public health emergencies. The Russian full-scale military invasion of Ukraine on February 24, 2022, has created a significant humanitarian and public health crisis, with disrupted healthcare services, shortages of medical supplies, and increased demand for emergency care. The ongoing conflict has displaced millions of people, with Spain ranking 5th in the world for the number of registered refugees from Ukraine. The research aims to estimate the impact of the Russian war in Ukraine on COVID-19 transmission in Spain using means of machine learning. The research is targeted at COVID-19 epidemic process during the war. The research subjects are methods and models of epidemic process simulation based on machine learning. To achieve the study's aim, we used forecasting methods and built a model of COVID-19 epidemic process based on the XGBoost method. As a result of the experiments, the accuracy of forecasting new cases of COVID-19 in Spain for 30 days was 99.79 %, and the death cases of COVID-19 in Spain – were 99.86 %. The model was applied to data on the incidence of COVID-19 in Spain for the first 30 days of the war escalation (24.02.2022 – 25.03.2022). The calculated forecasted values showed that the forced migration of the Ukrainian population to Spain, caused by the full-scale invasion of Russia, is not a decisive factor affecting the dynamics of the epidemic process of COVID-19 in Spain. Conclusions. The paper describes the results of an experimental study assessing the impact of the Russian full-scale war in Ukraine on COVID-19 dynamics in Spain. The developed model showed good performance to use it in public health practice. The analysis of the obtained results of the experimental study showed that the forced migration of the Ukrainian population to Spain, caused by the full-scale invasion of Russia, is not a decisive factor affecting the dynamics of the epidemic process of COVID-19 in Spain.","PeriodicalId":36122,"journal":{"name":"Radioelectronic and Computer Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronic and Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32620/reks.2023.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
COVID-19 pandemic has significantly impacted the world, with millions of infections and deaths, healthcare systems overwhelmed, economies disrupted, and daily life changed. Simulation has been recognized as a valuable tool in combating the pandemic, helping to model the spread of the virus, evaluate the impact of interventions, and inform decision-making processes. The accuracy and effectiveness of simulations depend on the quality of the underlying data, assumptions, and modeling techniques. Ongoing efforts to improve and refine simulation approaches can enhance their value in addressing future public health emergencies. The Russian full-scale military invasion of Ukraine on February 24, 2022, has created a significant humanitarian and public health crisis, with disrupted healthcare services, shortages of medical supplies, and increased demand for emergency care. The ongoing conflict has displaced millions of people, with Spain ranking 5th in the world for the number of registered refugees from Ukraine. The research aims to estimate the impact of the Russian war in Ukraine on COVID-19 transmission in Spain using means of machine learning. The research is targeted at COVID-19 epidemic process during the war. The research subjects are methods and models of epidemic process simulation based on machine learning. To achieve the study's aim, we used forecasting methods and built a model of COVID-19 epidemic process based on the XGBoost method. As a result of the experiments, the accuracy of forecasting new cases of COVID-19 in Spain for 30 days was 99.79 %, and the death cases of COVID-19 in Spain – were 99.86 %. The model was applied to data on the incidence of COVID-19 in Spain for the first 30 days of the war escalation (24.02.2022 – 25.03.2022). The calculated forecasted values showed that the forced migration of the Ukrainian population to Spain, caused by the full-scale invasion of Russia, is not a decisive factor affecting the dynamics of the epidemic process of COVID-19 in Spain. Conclusions. The paper describes the results of an experimental study assessing the impact of the Russian full-scale war in Ukraine on COVID-19 dynamics in Spain. The developed model showed good performance to use it in public health practice. The analysis of the obtained results of the experimental study showed that the forced migration of the Ukrainian population to Spain, caused by the full-scale invasion of Russia, is not a decisive factor affecting the dynamics of the epidemic process of COVID-19 in Spain.