Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O

IF 0.6 Q2 LAW
Devesh Singh
{"title":"Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O","authors":"Devesh Singh","doi":"10.2478/bjes-2021-0009","DOIUrl":null,"url":null,"abstract":"Abstract In advancement of interpretable machine learning (IML), this research proposes local interpretable model-agnostic explanations (LIME) as a new visualization technique in a novel informative way to analyze the foreign direct investment (FDI) inflow. This article examines the determinants of FDI inflow through IML with a supervised learning method to analyze the foreign investment determinants in Hungary by using an open-source artificial intelligence H2O platform. This author used three ML algorithms—general linear model (GML), gradient boosting machine (GBM), and random forest (RF) classifier—to analyze the FDI inflow from 2001 to 2018. The result of this study shows that in all three classifiers GBM performs better to analyze FDI inflow determinants. The variable value of production in a region is the most influenced determinant to the inflow of FDI in Hungarian regions. Explanatory visualizations are presented from the analyzed dataset, which leads to their use in decision-making.","PeriodicalId":29836,"journal":{"name":"TalTech Journal of European Studies","volume":"11 1","pages":"133 - 152"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TalTech Journal of European Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bjes-2021-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LAW","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In advancement of interpretable machine learning (IML), this research proposes local interpretable model-agnostic explanations (LIME) as a new visualization technique in a novel informative way to analyze the foreign direct investment (FDI) inflow. This article examines the determinants of FDI inflow through IML with a supervised learning method to analyze the foreign investment determinants in Hungary by using an open-source artificial intelligence H2O platform. This author used three ML algorithms—general linear model (GML), gradient boosting machine (GBM), and random forest (RF) classifier—to analyze the FDI inflow from 2001 to 2018. The result of this study shows that in all three classifiers GBM performs better to analyze FDI inflow determinants. The variable value of production in a region is the most influenced determinant to the inflow of FDI in Hungarian regions. Explanatory visualizations are presented from the analyzed dataset, which leads to their use in decision-making.
估算FDI流入的可解释机器学习方法:用LIME和H2O可视化ML模型
摘要在可解释机器学习(IML)的基础上,提出了局部可解释模型无关解释(LIME)作为一种新的可视化技术,以一种新颖的信息方式分析外国直接投资(FDI)流入。本文利用开源人工智能H2O平台,通过IML和监督学习方法检验外商直接投资流入的决定因素,分析匈牙利的外商投资决定因素。本文采用广义线性模型(GML)、梯度增强机(GBM)和随机森林(RF)分类器三种机器学习算法对2001 - 2018年的FDI流入进行了分析。本研究的结果表明,在所有三个分类器中,GBM都能更好地分析FDI流入的决定因素。一个地区的可变生产价值是影响匈牙利地区外国直接投资流入的最重要的决定因素。从分析的数据集中呈现解释性可视化,这导致了它们在决策中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
62.50%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信