{"title":"Effect on percolation threshold of catalytic layer: Pt/N-Doped graphene shell onto SWCNT for ORR electrode","authors":"Duangkamol Dechojarassri PhD, Xiaoyang Wang PhD, Sangwoo Chae PhD, Yasuyuki Sawada PhD, Takeshi Hashimoto BSc, Nagahiro Saito PhD","doi":"10.1002/fuce.202200020","DOIUrl":null,"url":null,"abstract":"<p>A high-rate oxygen reduction reaction (ORR) is necessary for polymer electrolyte membrane fuel cells (PEMFC). In this work, by using a solution plasma technique, Pt catalytic particles coated with N-doped graphene (Pt-NG) were effectively produced at 25°C. According to transmission electron microscope images, the average diameter of Pt particles was 4 nm, while the graphene layer thickness was less than 1 nm. A catalytic layer of Pt-NG supported on single-walled carbon nanotubes (Pt-NG/SWCNT) was synthesized. Cyclic voltammetry was used to assess the ORR characteristics of Pt-NG/SWCNT catalytic layers. Only at a density of SWCNT to solvent ratio of 0.75 mg ml<sup>−1</sup> were the ORR peaks clearly visible. Because of the high resistivity of SWCNT layers, the ORR peaks in other ranges, 0.4 mg ml<sup>−1</sup> to 2.0 mg ml<sup>−1</sup>, were not clearly observed. The effect of SWCNT concentration on conductivity was proven to follow the basic concept of the percolation threshold.</p>","PeriodicalId":91482,"journal":{"name":"","volume":"23 1","pages":"4-14"},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A high-rate oxygen reduction reaction (ORR) is necessary for polymer electrolyte membrane fuel cells (PEMFC). In this work, by using a solution plasma technique, Pt catalytic particles coated with N-doped graphene (Pt-NG) were effectively produced at 25°C. According to transmission electron microscope images, the average diameter of Pt particles was 4 nm, while the graphene layer thickness was less than 1 nm. A catalytic layer of Pt-NG supported on single-walled carbon nanotubes (Pt-NG/SWCNT) was synthesized. Cyclic voltammetry was used to assess the ORR characteristics of Pt-NG/SWCNT catalytic layers. Only at a density of SWCNT to solvent ratio of 0.75 mg ml−1 were the ORR peaks clearly visible. Because of the high resistivity of SWCNT layers, the ORR peaks in other ranges, 0.4 mg ml−1 to 2.0 mg ml−1, were not clearly observed. The effect of SWCNT concentration on conductivity was proven to follow the basic concept of the percolation threshold.