Effect on percolation threshold of catalytic layer: Pt/N-Doped graphene shell onto SWCNT for ORR electrode

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2022-11-09 DOI:10.1002/fuce.202200020
Duangkamol Dechojarassri PhD, Xiaoyang Wang PhD, Sangwoo Chae PhD, Yasuyuki Sawada PhD, Takeshi Hashimoto BSc, Nagahiro Saito PhD
{"title":"Effect on percolation threshold of catalytic layer: Pt/N-Doped graphene shell onto SWCNT for ORR electrode","authors":"Duangkamol Dechojarassri PhD,&nbsp;Xiaoyang Wang PhD,&nbsp;Sangwoo Chae PhD,&nbsp;Yasuyuki Sawada PhD,&nbsp;Takeshi Hashimoto BSc,&nbsp;Nagahiro Saito PhD","doi":"10.1002/fuce.202200020","DOIUrl":null,"url":null,"abstract":"<p>A high-rate oxygen reduction reaction (ORR) is necessary for polymer electrolyte membrane fuel cells (PEMFC). In this work, by using a solution plasma technique, Pt catalytic particles coated with N-doped graphene (Pt-NG) were effectively produced at 25°C. According to transmission electron microscope images, the average diameter of Pt particles was 4 nm, while the graphene layer thickness was less than 1 nm. A catalytic layer of Pt-NG supported on single-walled carbon nanotubes (Pt-NG/SWCNT) was synthesized. Cyclic voltammetry was used to assess the ORR characteristics of Pt-NG/SWCNT catalytic layers. Only at a density of SWCNT to solvent ratio of 0.75 mg ml<sup>−1</sup> were the ORR peaks clearly visible. Because of the high resistivity of SWCNT layers, the ORR peaks in other ranges, 0.4 mg ml<sup>−1</sup> to 2.0 mg ml<sup>−1</sup>, were not clearly observed. The effect of SWCNT concentration on conductivity was proven to follow the basic concept of the percolation threshold.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

A high-rate oxygen reduction reaction (ORR) is necessary for polymer electrolyte membrane fuel cells (PEMFC). In this work, by using a solution plasma technique, Pt catalytic particles coated with N-doped graphene (Pt-NG) were effectively produced at 25°C. According to transmission electron microscope images, the average diameter of Pt particles was 4 nm, while the graphene layer thickness was less than 1 nm. A catalytic layer of Pt-NG supported on single-walled carbon nanotubes (Pt-NG/SWCNT) was synthesized. Cyclic voltammetry was used to assess the ORR characteristics of Pt-NG/SWCNT catalytic layers. Only at a density of SWCNT to solvent ratio of 0.75 mg ml−1 were the ORR peaks clearly visible. Because of the high resistivity of SWCNT layers, the ORR peaks in other ranges, 0.4 mg ml−1 to 2.0 mg ml−1, were not clearly observed. The effect of SWCNT concentration on conductivity was proven to follow the basic concept of the percolation threshold.

Pt/N掺杂石墨烯壳对催化层渗透阈值的影响:用于ORR电极的swcnts
聚合物电解质膜燃料电池(PEMFC)需要高速氧还原反应(ORR)。在这项工作中,通过使用溶液等离子体技术,在25°C下有效地制备了涂有N掺杂石墨烯(Pt‐NG)的Pt催化颗粒。根据透射电子显微镜图像,Pt颗粒的平均直径为4nm,而石墨烯层的厚度小于1nm。合成了负载在单壁碳纳米管上的Pt‐NG催化层(Pt‐NG/SWCNT)。循环伏安法用于评估Pt-NG/SWCNT催化层的ORR特性。只有在SWCNT与溶剂之比为0.75 mg ml−1的密度下,ORR峰才清晰可见。由于SWCNT层的高电阻率,没有清楚地观察到其他范围(0.4 mg ml−1至2.0 mg ml−2)的ORR峰。SWCNT浓度对电导率的影响被证明遵循渗流阈值的基本概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信