Complementations in $C(K,X)$ and $\ell _\infty (X)$

Pub Date : 2021-04-14 DOI:10.4064/cm8868-10-2022
Leandro Candido
{"title":"Complementations in $C(K,X)$ and $\\ell _\\infty (X)$","authors":"Leandro Candido","doi":"10.4064/cm8868-10-2022","DOIUrl":null,"url":null,"abstract":"We investigate the geometry of $C(K,X)$ and $\\ell_{\\infty}(X)$ spaces through complemented subspaces of the form $\\left(\\bigoplus_{i\\in \\varGamma}X_i\\right)_{c_0}$. Concerning the geometry of $C(K,X)$ spaces we extend some results of D. Alspach and E. M. Galego from \\cite{AlspachGalego}. On $\\ell_{\\infty}$-sums of Banach spaces we prove that if $\\ell_{\\infty}(X)$ has a complemented subspace isomorphic to $c_0(Y)$, then, for some $n \\in \\mathbb{N}$, $X^n$ has a subspace isomorphic to $c_0(Y)$. We further prove the following: \n(1) If $C(K)\\sim c_0(C(K))$ and $C(L)\\sim c_0(C(L))$ and $\\ell_{\\infty}(C(K))\\sim \\ell_{\\infty}(C(L))$, then $K$ and $L$ have the same cardinality. \n(2) If $K_1$ and $K_2$ are infinite metric compacta, then $\\ell_{\\infty}(C(K_1))\\sim \\ell_{\\infty}(C(K_2))$ if and only if $C(K_1)$ is isomorphic to $C(K_2)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8868-10-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the geometry of $C(K,X)$ and $\ell_{\infty}(X)$ spaces through complemented subspaces of the form $\left(\bigoplus_{i\in \varGamma}X_i\right)_{c_0}$. Concerning the geometry of $C(K,X)$ spaces we extend some results of D. Alspach and E. M. Galego from \cite{AlspachGalego}. On $\ell_{\infty}$-sums of Banach spaces we prove that if $\ell_{\infty}(X)$ has a complemented subspace isomorphic to $c_0(Y)$, then, for some $n \in \mathbb{N}$, $X^n$ has a subspace isomorphic to $c_0(Y)$. We further prove the following: (1) If $C(K)\sim c_0(C(K))$ and $C(L)\sim c_0(C(L))$ and $\ell_{\infty}(C(K))\sim \ell_{\infty}(C(L))$, then $K$ and $L$ have the same cardinality. (2) If $K_1$ and $K_2$ are infinite metric compacta, then $\ell_{\infty}(C(K_1))\sim \ell_{\infty}(C(K_2))$ if and only if $C(K_1)$ is isomorphic to $C(K_2)$.
分享
查看原文
$C(K,X)$和中的补充 $\ell _\infty (X)$
我们通过$\left(\bigoplus_{i\in \varGamma}X_i\right)_{c_0}$形式的互补子空间研究了$C(K,X)$和$\ell_{\infty}(X)$空间的几何。关于$C(K,X)$空间的几何性质,我们推广了D. Alspach和E. M. Galego在\cite{AlspachGalego}上的一些结果。在Banach空间的$\ell_{\infty}$ -和上,证明了如果$\ell_{\infty}(X)$具有与$c_0(Y)$同构的补子空间,则对于某些$n \in \mathbb{N}$, $X^n$具有与$c_0(Y)$同构的子空间。我们进一步证明了:(1)如果$C(K)\sim c_0(C(K))$与$C(L)\sim c_0(C(L))$和$\ell_{\infty}(C(K))\sim \ell_{\infty}(C(L))$,则$K$和$L$具有相同的基数。(2)如果$K_1$和$K_2$是无限度量紧致,则$\ell_{\infty}(C(K_1))\sim \ell_{\infty}(C(K_2))$当且仅当$C(K_1)$同构于$C(K_2)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信