{"title":"Asymptotics of k dimensional spherical integrals and applications","authors":"A. Guionnet, Jonathan Husson","doi":"10.30757/alea.v19-30","DOIUrl":null,"url":null,"abstract":"In this article, we prove that k-dimensional spherical integrals are asymptotically equivalent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles in random matrix theory known before only in a one-dimensional case. As examples, we study the universality of the large deviations for k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-30","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10
Abstract
In this article, we prove that k-dimensional spherical integrals are asymptotically equivalent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles in random matrix theory known before only in a one-dimensional case. As examples, we study the universality of the large deviations for k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.