Meng Zhang, Jian Zhou, Guifeng Zhao, Jiankun Xu, Chao Sun
{"title":"Study of structural-thermal characteristics of electrified conductors under aeolian vibration","authors":"Meng Zhang, Jian Zhou, Guifeng Zhao, Jiankun Xu, Chao Sun","doi":"10.12989/WAS.2021.33.2.155","DOIUrl":null,"url":null,"abstract":"High-voltage transmission lines are featured by electrical and structural properties. Current studies on aeolian vibration of transmission lines focus primarily on structural responses of unenergized conductors. However, moderate aeolian vibration can also enhance the convection heat transfer capability of a transmission line, which improves the steady current-carrying capacity. In this paper, a fluid-structure interaction (FSI) model is established to study the structural thermal characteristics of overhead electrified aluminum conductor steel-reinforced cable (ACSR) conductors. Moreover, the fatigue damage of the energized conductor is analyzed under operational conditions. Results show that there is considerable influence from aeolian vibration on the current-carrying capacity of energized conductors. Compared with the nonelectrical conductors, aeolian vibration can enhance the convective heat transfer effect of energized conductors. Additionally, fatigue life of electrified transmission lines is larger than that of nonelectrical conductors under aeolian vibration. The developed structure-fluid-thermal model can be used to aid design and operation optimization of transmission lines.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"33 1","pages":"155"},"PeriodicalIF":1.3000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/WAS.2021.33.2.155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
High-voltage transmission lines are featured by electrical and structural properties. Current studies on aeolian vibration of transmission lines focus primarily on structural responses of unenergized conductors. However, moderate aeolian vibration can also enhance the convection heat transfer capability of a transmission line, which improves the steady current-carrying capacity. In this paper, a fluid-structure interaction (FSI) model is established to study the structural thermal characteristics of overhead electrified aluminum conductor steel-reinforced cable (ACSR) conductors. Moreover, the fatigue damage of the energized conductor is analyzed under operational conditions. Results show that there is considerable influence from aeolian vibration on the current-carrying capacity of energized conductors. Compared with the nonelectrical conductors, aeolian vibration can enhance the convective heat transfer effect of energized conductors. Additionally, fatigue life of electrified transmission lines is larger than that of nonelectrical conductors under aeolian vibration. The developed structure-fluid-thermal model can be used to aid design and operation optimization of transmission lines.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.