Internal layer intersecting the boundary of a domain in a singular advection–diffusion equation

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Y. Amirat, A. Münch
{"title":"Internal layer intersecting the boundary of a domain in a singular advection–diffusion equation","authors":"Y. Amirat, A. Münch","doi":"10.3233/asy-231836","DOIUrl":null,"url":null,"abstract":"We perform an asymptotic analysis with respect to the parameter ε > 0 of the solution of the scalar advection–diffusion equation y t ε + M ( x , t ) y x ε − ε y x x ε = 0, ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T ), supplemented with Dirichlet boundary conditions. For small values of ε, the solution y ε exhibits a boundary layer of size O ( ε ) in the neighborhood of x = 1 (assuming M > 0) and an internal layer of size O ( ε 1 / 2 ) in the neighborhood of the characteristic starting from the point ( 0 , 0 ). Assuming that these layers interact each other after a finite time T > 0 and using the method of matched asymptotic expansions, we construct an explicit approximation P ε satisfying ‖ y ε − P ε ‖ L ∞ ( 0 , T ; L 2 ( 0 , 1 ) ) = O ( ε 1 / 2 ). We emphasize the additional difficulties with respect to the case M constant considered recently by the authors.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We perform an asymptotic analysis with respect to the parameter ε > 0 of the solution of the scalar advection–diffusion equation y t ε + M ( x , t ) y x ε − ε y x x ε = 0, ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T ), supplemented with Dirichlet boundary conditions. For small values of ε, the solution y ε exhibits a boundary layer of size O ( ε ) in the neighborhood of x = 1 (assuming M > 0) and an internal layer of size O ( ε 1 / 2 ) in the neighborhood of the characteristic starting from the point ( 0 , 0 ). Assuming that these layers interact each other after a finite time T > 0 and using the method of matched asymptotic expansions, we construct an explicit approximation P ε satisfying ‖ y ε − P ε ‖ L ∞ ( 0 , T ; L 2 ( 0 , 1 ) ) = O ( ε 1 / 2 ). We emphasize the additional difficulties with respect to the case M constant considered recently by the authors.
奇异平流扩散方程中与区域边界相交的内层
对于标量平流扩散方程y t ε + M (x, t) y x ε−ε y x x ε = 0, (x, t)∈(0,1)× (0, t)的解,在Dirichlet边界条件下,对参数ε > 0进行了渐近分析。当ε值较小时,解y ε在x = 1邻域(假设M > 0)有一个尺寸为O (ε)的边界层,在点(0,0)开始的特征邻域有一个尺寸为O (ε 1 / 2)的内层。假设这些层在有限时间后相互作用,并使用匹配渐近展开的方法,我们构造了一个显式近似P ε满足‖y ε−P ε‖L∞(0,T;l2 (0,1)) = 0 (ε 1 / 2)。我们强调关于作者最近考虑的M常数情况的额外困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信