Fuzzy hypersoft contra maps, homeomorphisms, and application in Covid-19 diagnosis using Hamming distance

IF 2 Q1 MATHEMATICS
S. Aranganayagi, M. Saraswathi, S. Santra, D. Baleanu, A. Vadivel, V. Govindan
{"title":"Fuzzy hypersoft contra maps, homeomorphisms, and application in Covid-19 diagnosis using Hamming distance","authors":"S. Aranganayagi, M. Saraswathi, S. Santra, D. Baleanu, A. Vadivel, V. Govindan","doi":"10.22436/jmcs.030.03.01","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce and study fuzzy hypersoft contra open, fuzzy hypersoft contra semi open, fuzzy hypersoft contra closed, and fuzzy hypersoft contra semi closed maps in fuzzy hypersoft topological spaces. Basic properties of fuzzy hypersoft contra open, contra semi open, contra closed and contra semi closed maps are analyzed with examples. Also, the relation between fuzzy hypersoft contra open maps, contra semi open maps, contra closed maps and contra semi closed maps is discussed. It is extended to fuzzy hypersoft contra homeomorphism, contra semi homeomorphism, contra C-homeomorphism and its related characteristics are also investigated. The fuzzy hypersoft set measure Hamming distance can be applied in real -world decision-making problems containing more uncertain and inadequate data. By applying Hamming distance between the Covid-19 patients and the other patients, a better decision can be taken in the Covid-19 diagnosis. This paper proposes a method to diagnose Covid-19 using Hamming distance of fuzzy hypersoft sets. The association between the patients and the symptoms is formulated as fuzzy hypersoft sets in which the Hamming distance measure is applied to decide on Covid-19 diagnosis.","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.030.03.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims to introduce and study fuzzy hypersoft contra open, fuzzy hypersoft contra semi open, fuzzy hypersoft contra closed, and fuzzy hypersoft contra semi closed maps in fuzzy hypersoft topological spaces. Basic properties of fuzzy hypersoft contra open, contra semi open, contra closed and contra semi closed maps are analyzed with examples. Also, the relation between fuzzy hypersoft contra open maps, contra semi open maps, contra closed maps and contra semi closed maps is discussed. It is extended to fuzzy hypersoft contra homeomorphism, contra semi homeomorphism, contra C-homeomorphism and its related characteristics are also investigated. The fuzzy hypersoft set measure Hamming distance can be applied in real -world decision-making problems containing more uncertain and inadequate data. By applying Hamming distance between the Covid-19 patients and the other patients, a better decision can be taken in the Covid-19 diagnosis. This paper proposes a method to diagnose Covid-19 using Hamming distance of fuzzy hypersoft sets. The association between the patients and the symptoms is formulated as fuzzy hypersoft sets in which the Hamming distance measure is applied to decide on Covid-19 diagnosis.
模糊超软对比映射、同胚及其在汉明距离诊断新冠肺炎中的应用
本文旨在介绍和研究模糊超软拓扑空间中的模糊超软反开、模糊超软半开、模糊逆闭和模糊超软逆半闭映射。通过实例分析了模糊超软反开、反半开、反闭和反半闭映射的基本性质。讨论了模糊超软逆开映射、逆半开映射、反闭映射和反半闭映射之间的关系。将它推广到模糊超软逆同胚、逆半同胚、反C-同胚及其相关特性。模糊超软集测度Hamming距离可以应用于包含更多不确定和不充分数据的现实决策问题。通过在新冠肺炎患者和其他患者之间应用汉明距离,可以在新冠肺炎诊断中做出更好的决定。本文提出了一种利用模糊超软集的Hamming距离诊断新冠肺炎的方法。患者和症状之间的关联被公式化为模糊超软集,其中应用汉明距离测度来决定新冠肺炎诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信