Padmakar-Ivan Index of Some Types of Perfect Graphs

IF 1 Q1 MATHEMATICS
Manju Sankaramalil Chithrabhanu, K. Somasundaram
{"title":"Padmakar-Ivan Index of Some Types of Perfect Graphs","authors":"Manju Sankaramalil Chithrabhanu, K. Somasundaram","doi":"10.47443/dml.2021.s215","DOIUrl":null,"url":null,"abstract":"The Padmakar-Ivan (PI) index of a graph G is defined as PI ( G ) = (cid:80) e ∈ E ( G ) ( | V ( G ) | − N G ( e )) , where N G ( e ) is the number of equidistant vertices for the edge e . A graph is perfect if for every induced subgraph H , the equation χ ( H ) = ω ( H ) holds, where χ ( H ) is the chromatic number and ω ( H ) is the size of a maximum clique of H . In this paper, the PI index of some types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.s215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The Padmakar-Ivan (PI) index of a graph G is defined as PI ( G ) = (cid:80) e ∈ E ( G ) ( | V ( G ) | − N G ( e )) , where N G ( e ) is the number of equidistant vertices for the edge e . A graph is perfect if for every induced subgraph H , the equation χ ( H ) = ω ( H ) holds, where χ ( H ) is the chromatic number and ω ( H ) is the size of a maximum clique of H . In this paper, the PI index of some types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.
几类完美图的Padmakar-Ivan指数
图G的Padmakar-Ivan(PI)指数定义为PI(G)=(cid:80)e∈e(G)(|V(G)|−NG(e)),其中NG(e)是边e的等距顶点数。一个图是完美的,如果对于每个诱导子图H,方程χ(H)=ω(H)成立,其中χ(H)是色数,ω(H)为H的最大团的大小。本文得到了一些类型的完全图的PI指数。这些类型包括共二部图、线图和棱柱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信