Exact irreducible moments of the Landau collision operator in the random-velocity moment expansion

IF 1.3 Q3 ORTHOPEDICS
J. Ji, J. Spencer, E. Held
{"title":"Exact irreducible moments of the Landau collision operator in the random-velocity moment expansion","authors":"J. Ji, J. Spencer, E. Held","doi":"10.1088/2516-1067/ab7d0f","DOIUrl":null,"url":null,"abstract":"Exact moments of the Landau collision operator are calculated for the irreducible Hermite polynomials written in terms of the random-velocity variable. We present closed, algebraic formulas which can be implemented in computer algebra systems. The formulas reproduce the results for the total-velocity moment expansion (J-Y Ji and E D Held, 2006 Phys. Plasmas 13 102 103) and for the random-velocity moment expansion with the small mass-ratio approximation (J-Y Ji and E D Held, 2008 Phys. Plasmas 15 102 101). For verification of the formulas, example calculations for several lowest order moments are presented. The collisional moments can be applied in the derivations of Braginskii and integral (nonlocal) closures for arbitrary relative flow velocity between electrons and ions.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ab7d0f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 1

Abstract

Exact moments of the Landau collision operator are calculated for the irreducible Hermite polynomials written in terms of the random-velocity variable. We present closed, algebraic formulas which can be implemented in computer algebra systems. The formulas reproduce the results for the total-velocity moment expansion (J-Y Ji and E D Held, 2006 Phys. Plasmas 13 102 103) and for the random-velocity moment expansion with the small mass-ratio approximation (J-Y Ji and E D Held, 2008 Phys. Plasmas 15 102 101). For verification of the formulas, example calculations for several lowest order moments are presented. The collisional moments can be applied in the derivations of Braginskii and integral (nonlocal) closures for arbitrary relative flow velocity between electrons and ions.
随机速度矩展开中朗道碰撞算子的精确不可约矩
对于用随机速度变量表示的不可约埃尔米特多项式,计算了朗道碰撞算子的精确矩。我们提出了可以在计算机代数系统中实现的封闭代数公式。这些公式再现了总速度矩展开的结果(J-Y Ji and E D Held, 2006 Phys.)。等离子体13 102 103)和小质量比近似下的随机速度矩膨胀(J-Y Ji, E D Held, 2008)。等离子体15 102 101)。为了验证公式的正确性,给出了几种最低阶矩的算例。碰撞矩可以应用于任意电子和离子之间相对流动速度的Braginskii和积分(非局部)闭包的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Research Express
Plasma Research Express Energy-Nuclear Energy and Engineering
CiteScore
2.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信