Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions

IF 0.5 Q3 MATHEMATICS
Debanjana Kundu
{"title":"Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions","authors":"Debanjana Kundu","doi":"10.1007/s40316-020-00147-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the growth of (fine) Selmer groups of elliptic curves in certain infinite Galois extensions where the Galois group <i>G</i> is a uniform, pro-<i>p</i>, <i>p</i>-adic Lie group. By comparing the growth of (fine) Selmer groups with that of class groups, we show that it is possible for the <span>\\(\\mu \\)</span>-invariant of the (fine) Selmer group to become arbitrarily large in a certain class of nilpotent, uniform, pro-<i>p</i> Lie extension. We also study the growth of fine Selmer groups in false Tate curve extensions.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"347 - 362"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00147-1","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00147-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we study the growth of (fine) Selmer groups of elliptic curves in certain infinite Galois extensions where the Galois group G is a uniform, pro-p, p-adic Lie group. By comparing the growth of (fine) Selmer groups with that of class groups, we show that it is possible for the \(\mu \)-invariant of the (fine) Selmer group to become arbitrarily large in a certain class of nilpotent, uniform, pro-p Lie extension. We also study the growth of fine Selmer groups in false Tate curve extensions.

一致pro-p扩展中Selmer群和精细Selmer群的生长
在本文中,我们研究了某些无限Galois扩张中椭圆曲线的(精细)Selmer群的增长,其中Galois群G是一致的pro-p,p-adic Lie群。通过比较(精细)Selmer群与类群的增长,我们证明了(精细)Selmer群的\(\mu\)-不变量在某一类幂零、一致、pro-p李扩展中变得任意大是可能的。我们还研究了精细Selmer群在假泰特曲线扩展中的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信