{"title":"Climate Change Impact On Water Balance Components In Arctic River Basins","authors":"O. Nasonova, Yeugeny M. Gusev, Evgeny G. Kovalev","doi":"10.24057/2071-9388-2021-144","DOIUrl":null,"url":null,"abstract":"Climate change impact on the water balance components (including river runoff, evapotranspiration and precipitation) of five Arctic river basins (the Northern Dvina, Taz, Lena, Indigirka, and MacKenzie), located in different natural conditions, was investigated using a physically-based land surface model SWAP and meteorological projections simulated at half-degree spatial resolution by five Global Climate Models (GCM) for four Representative Concentration Pathways (RCP) scenarios from 2005 to 2100. After the SWAP model calibration and validation, 20 projections of changes in climatic values of the water balance components were obtained for each river basin. The projected changes in climatic river runoff were analyzed with climatic precipitation and evapotranspiration changes. On average, all rivers’ water balance components will increase by the end of the 21st century: precipitation by 12-30%, runoff by 10–30%, and evapotranspiration by 6-47% depending on the river basin. The partitioning of increment in precipitation between runoff and evapotranspiration differs for the selected river basins due to differences in their natural conditions. The Northern Dvina and Taz river runoff will experience the most negligible impact of climate change under the RCP scenarios. This impact will increase towards eastern Siberia and reach a maximum in the Indigirka basin. Analysis of the obtained hydrological projections made it possible to estimate their uncertainties by applying different GCMs and RCP scenarios. On average, the contribution of GCMs to the uncertainty of hydrological projections is nearly twice more significant than the contribution of scenarios in 2006–2036 and decreases over time to 1.1-1.2 in 2068–2099.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2021-144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Climate change impact on the water balance components (including river runoff, evapotranspiration and precipitation) of five Arctic river basins (the Northern Dvina, Taz, Lena, Indigirka, and MacKenzie), located in different natural conditions, was investigated using a physically-based land surface model SWAP and meteorological projections simulated at half-degree spatial resolution by five Global Climate Models (GCM) for four Representative Concentration Pathways (RCP) scenarios from 2005 to 2100. After the SWAP model calibration and validation, 20 projections of changes in climatic values of the water balance components were obtained for each river basin. The projected changes in climatic river runoff were analyzed with climatic precipitation and evapotranspiration changes. On average, all rivers’ water balance components will increase by the end of the 21st century: precipitation by 12-30%, runoff by 10–30%, and evapotranspiration by 6-47% depending on the river basin. The partitioning of increment in precipitation between runoff and evapotranspiration differs for the selected river basins due to differences in their natural conditions. The Northern Dvina and Taz river runoff will experience the most negligible impact of climate change under the RCP scenarios. This impact will increase towards eastern Siberia and reach a maximum in the Indigirka basin. Analysis of the obtained hydrological projections made it possible to estimate their uncertainties by applying different GCMs and RCP scenarios. On average, the contribution of GCMs to the uncertainty of hydrological projections is nearly twice more significant than the contribution of scenarios in 2006–2036 and decreases over time to 1.1-1.2 in 2068–2099.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.