Investigation of Early Corrosion Behavior of Canister Candidate Materials in Oxic Groundwater by the EQCM Method

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY
Gha-Young Kim, Sung-Wook Kim, Junhyuk Jang, S. Yoon, Jin-Seop Kim
{"title":"Investigation of Early Corrosion Behavior of Canister Candidate Materials in Oxic Groundwater by the EQCM Method","authors":"Gha-Young Kim, Sung-Wook Kim, Junhyuk Jang, S. Yoon, Jin-Seop Kim","doi":"10.1155/2022/4582625","DOIUrl":null,"url":null,"abstract":"This study investigated the corrosion mass changes of canister candidate materials (Cu, Ni, Ti, SS304) in an oxic groundwater solution using the electrochemical quartz crystal microbalance method in order to estimate corrosion thickness. The materials were immersed in naturally aerated groundwater with and without the addition of chloride ions to observe the mass changes as well as the open-circuit potential (corrosion potential). In the oxic groundwater solution, Ni, Ti, and SS304 exhibited negligible mass changes, indicating their insusceptibility to general corrosion. In contrast, the Cu electrode exhibited a relatively significant mass change (63.8 ng/cm2 for 60 h), and the maximum corrosion thickness was estimated to be approximately 0.1 μm/yr. In the presence of chloride ions, the Ni and Ti electrodes did not reveal demonstrate any significant changes, whereas the SS304 electrode was slightly increased compared to an absence of chloride ions. A lower mass change occurred when the Cu electrode was immersed in the chloride-containing groundwater solution compared with the absence of chlorides because the dissolution of Cu as \n \n \n \n CuCl\n \n 2\n −\n \n \n was involved in Cu2O formation.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/4582625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

This study investigated the corrosion mass changes of canister candidate materials (Cu, Ni, Ti, SS304) in an oxic groundwater solution using the electrochemical quartz crystal microbalance method in order to estimate corrosion thickness. The materials were immersed in naturally aerated groundwater with and without the addition of chloride ions to observe the mass changes as well as the open-circuit potential (corrosion potential). In the oxic groundwater solution, Ni, Ti, and SS304 exhibited negligible mass changes, indicating their insusceptibility to general corrosion. In contrast, the Cu electrode exhibited a relatively significant mass change (63.8 ng/cm2 for 60 h), and the maximum corrosion thickness was estimated to be approximately 0.1 μm/yr. In the presence of chloride ions, the Ni and Ti electrodes did not reveal demonstrate any significant changes, whereas the SS304 electrode was slightly increased compared to an absence of chloride ions. A lower mass change occurred when the Cu electrode was immersed in the chloride-containing groundwater solution compared with the absence of chlorides because the dissolution of Cu as CuCl 2 − was involved in Cu2O formation.
用EQCM法研究含氧地下水中罐候选材料的早期腐蚀行为
本研究采用电化学石英晶体微天平法研究了罐候选材料(Cu、Ni、Ti、SS304)在有毒地下水溶液中的腐蚀质量变化,以估计腐蚀厚度。将材料浸入添加和不添加氯离子的天然充气地下水中,以观察质量变化以及开路电位(腐蚀电位)。在有毒的地下水溶液中,Ni、Ti和SS304表现出可忽略的质量变化,表明它们对一般腐蚀不敏感。相反,Cu电极表现出相对显著的质量变化(63.8 ng/cm2,60 h) ,最大腐蚀厚度估计约为0.1 μm/yr。在存在氯离子的情况下,Ni和Ti电极没有显示出任何显著的变化,而SS304电极与不存在氯离子相比略有增加。与不存在氯化物相比,当Cu电极浸入含氯化物的地下水溶液中时,质量变化较小,因为Cu以CuCl2−的形式溶解参与了Cu2O的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信