{"title":"On braids and links up to link-homotopy","authors":"Emmanuel Graff","doi":"10.2969/jmsj/90449044","DOIUrl":null,"url":null,"abstract":"This paper deals with links and braids up to link-homotopy, studied from the viewpoint of Habiro's clasper calculus. More precisely, we use clasper homotopy calculus in two main directions. First, we define and compute a faithful linear representation of the homotopy braid group, by using claspers as geometric commutators. Second, we give a geometric proof of Levine's classification of 4-component links up to link-homotopy, and go further with the classification of 5-component links in the algebraically split case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/90449044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with links and braids up to link-homotopy, studied from the viewpoint of Habiro's clasper calculus. More precisely, we use clasper homotopy calculus in two main directions. First, we define and compute a faithful linear representation of the homotopy braid group, by using claspers as geometric commutators. Second, we give a geometric proof of Levine's classification of 4-component links up to link-homotopy, and go further with the classification of 5-component links in the algebraically split case.