{"title":"Invariant probability measures from pseudoholomorphic curves Ⅰ","authors":"Rohil Prasad","doi":"10.3934/jmd.2023002","DOIUrl":null,"url":null,"abstract":"We introduce a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds using pseudoholomorphic curve techniques from symplectic geometry. These flows include any non-singular volume preserving flow in dimension three, and autonomous Hamiltonian flows on closed, regular energy levels in symplectic manifolds of any dimension. As an application, we use our method to prove the existence of obstructions to unique ergodicity for this class of flows, generalizing results of Taubes and Ginzburg-Niche.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds using pseudoholomorphic curve techniques from symplectic geometry. These flows include any non-singular volume preserving flow in dimension three, and autonomous Hamiltonian flows on closed, regular energy levels in symplectic manifolds of any dimension. As an application, we use our method to prove the existence of obstructions to unique ergodicity for this class of flows, generalizing results of Taubes and Ginzburg-Niche.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.