Bit complexity for critical point computation in smooth and compact real hypersurfaces

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Elliott, É. Schost
{"title":"Bit complexity for critical point computation in smooth and compact real hypersurfaces","authors":"J. Elliott, É. Schost","doi":"10.1145/3377006.3377014","DOIUrl":null,"url":null,"abstract":"Consider the polynomial mapping defined by the projection to the first coordinate on a real, smooth and compact hypersurface. The critical points of this mapping in generic coordinates have several applications in real algebraic geometry. We provide bit complexity estimates for computing them. Generic coordinates are obtained by applying a randomly chosen linear change of variables to the polynomial defining the hypersurface. The coordinates are sufficiently generic when the Jacobian matrix of the system under study has full rank at the critical points and when the number of critical points is finite. We have proven a new quantitative extension of Thom's weak transversality theorem [1]. By applying this extension, we are able to choose sufficiently generic changes of variables with arbitrarily high probability.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"53 1","pages":"114 - 117"},"PeriodicalIF":0.4000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3377006.3377014","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377006.3377014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Consider the polynomial mapping defined by the projection to the first coordinate on a real, smooth and compact hypersurface. The critical points of this mapping in generic coordinates have several applications in real algebraic geometry. We provide bit complexity estimates for computing them. Generic coordinates are obtained by applying a randomly chosen linear change of variables to the polynomial defining the hypersurface. The coordinates are sufficiently generic when the Jacobian matrix of the system under study has full rank at the critical points and when the number of critical points is finite. We have proven a new quantitative extension of Thom's weak transversality theorem [1]. By applying this extension, we are able to choose sufficiently generic changes of variables with arbitrarily high probability.
光滑紧致实超曲面中临界点计算的位复杂度
考虑由投影到实、光滑和紧致超曲面上的第一个坐标定义的多项式映射。这种映射在一般坐标中的临界点在实代数几何中有几个应用。我们为计算它们提供比特复杂性估计。一般坐标是通过将随机选择的变量线性变化应用于定义超曲面的多项式来获得的。当所研究系统的雅可比矩阵在临界点处具有全秩时,以及当临界点的数量有限时,坐标是足够通用的。我们已经证明了Thom弱横截性定理[1]的一个新的定量推广。通过应用这个扩展,我们能够以任意高的概率选择足够通用的变量变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信