M. Cheshire, Jake Drysdale, Sean Enderby, Maciej Tomczak, Jason Hockman
{"title":"Deep Audio Effects for Snare Drum Recording Transformations","authors":"M. Cheshire, Jake Drysdale, Sean Enderby, Maciej Tomczak, Jason Hockman","doi":"10.17743/jaes.2022.0041","DOIUrl":null,"url":null,"abstract":"The ability to perceptually modify drum recording parameters in a post-recording process would be of great benefit to engineers limited by time or equipment. In this work, a data-driven approach to post-recording modification of the dampening and microphone positioning parameters commonly associated with snare drum capture is proposed. The system consists of a deep encoder that analyzes audio input and predicts optimal parameters of one or more third-party audio effects, which are then used to process the audio and produce the desired transformed output audio. Furthermore, two novel audio effects are specifically developed to take advantage of the multiple parameter learning abilities of the system. Perceptual quality of transformations is assessed through a subjective listening test, and an object evaluation is used to measure system performance. Results demonstrate a capacity to emulate snare dampening; however, attempts were not successful for emulating microphone position changes.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to perceptually modify drum recording parameters in a post-recording process would be of great benefit to engineers limited by time or equipment. In this work, a data-driven approach to post-recording modification of the dampening and microphone positioning parameters commonly associated with snare drum capture is proposed. The system consists of a deep encoder that analyzes audio input and predicts optimal parameters of one or more third-party audio effects, which are then used to process the audio and produce the desired transformed output audio. Furthermore, two novel audio effects are specifically developed to take advantage of the multiple parameter learning abilities of the system. Perceptual quality of transformations is assessed through a subjective listening test, and an object evaluation is used to measure system performance. Results demonstrate a capacity to emulate snare dampening; however, attempts were not successful for emulating microphone position changes.
期刊介绍:
The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers.
The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.