Derived categories and the genus of space curves

IF 1.2 1区 数学 Q1 MATHEMATICS
Emanuele Macrì, B. Schmidt
{"title":"Derived categories and the genus of space curves","authors":"Emanuele Macrì, B. Schmidt","doi":"10.14231/AG-2020-006","DOIUrl":null,"url":null,"abstract":"We generalize a classical result about the genus of curves in projective space by Gruson and Peskine to principally polarized abelian threefolds of Picard rank one. The proof is based on wall-crossing techniques for ideal sheaves of curves in the derived category. In the process, we obtain bounds for Chern characters of other stable objects such as rank two sheaves. The argument gives a proof for projective space as well. In this case these techniques also indicate an approach for a conjecture by Hartshorne and Hirschowitz and we prove first steps towards it.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

Abstract

We generalize a classical result about the genus of curves in projective space by Gruson and Peskine to principally polarized abelian threefolds of Picard rank one. The proof is based on wall-crossing techniques for ideal sheaves of curves in the derived category. In the process, we obtain bounds for Chern characters of other stable objects such as rank two sheaves. The argument gives a proof for projective space as well. In this case these techniques also indicate an approach for a conjecture by Hartshorne and Hirschowitz and we prove first steps towards it.
导出范畴与空间曲线的亏格
我们将Grusson和Peskine关于射影空间中曲线亏格的一个经典结果推广到Picard秩为1的主极化阿贝尔三重。该证明基于导出类别中理想曲线槽的过墙技术。在此过程中,我们得到了其他稳定对象(如秩二滑轮)的Chern特征的界。该论点也给出了射影空间的一个证明。在这种情况下,这些技术也表明了Hartshorne和Hirschowitz的猜想的方法,我们证明了实现这一猜想的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信