Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet

IF 1.5 3区 数学 Q1 MATHEMATICS
R. Dalang, T. Mountford
{"title":"Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet","authors":"R. Dalang, T. Mountford","doi":"10.4064/dm811-9-2021","DOIUrl":null,"url":null,"abstract":"We first consider the additive Brownian motion process $(X(s_1,s_2),\\ (s_1,s_2) \\in \\mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\\{(s_1,s_2)\\in \\mathbb{R}^2: X(s_1,s_2) >0\\}$ is equal to $$ \n\\frac{1}{4}\\left(1 + \\sqrt{13 + 4 \\sqrt{5}}\\right) \\simeq 1.421\\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm811-9-2021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We first consider the additive Brownian motion process $(X(s_1,s_2),\ (s_1,s_2) \in \mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\{(s_1,s_2)\in \mathbb{R}^2: X(s_1,s_2) >0\}$ is equal to $$ \frac{1}{4}\left(1 + \sqrt{13 + 4 \sqrt{5}}\right) \simeq 1.421\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.
加性布朗运动气泡和布朗薄片边界的豪斯多夫维数
我们首先考虑由$X(s_1,s_2)=Z_1(s_1)-Z_2(s_2)$定义的加性布朗运动过程$(X(s_2,s_1),\in\mathbb{R}^2)$,其中$Z_1$和$Z_2$是两个独立的(双侧)布朗运动。我们在概率一的情况下证明了随机集$\{(s_1,s_2)\in\mathbb{R}^2:X(s_1、s_2)>0\}$的任意连通分量的边界的Hausdorff维数等于$\frac{1}{4}\left(1+\sqrt{13+4\sqrt{5}}\right)\simeq 1.421\,.$$。然后,当$X$被非负象限索引的标准布朗表取代时,同样的结果也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信