Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Dalang, T. Mountford
{"title":"Hausdorff dimension of the boundary of bubbles of additive Brownian motion and of the Brownian sheet","authors":"R. Dalang, T. Mountford","doi":"10.4064/dm811-9-2021","DOIUrl":null,"url":null,"abstract":"We first consider the additive Brownian motion process $(X(s_1,s_2),\\ (s_1,s_2) \\in \\mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\\{(s_1,s_2)\\in \\mathbb{R}^2: X(s_1,s_2) >0\\}$ is equal to $$ \n\\frac{1}{4}\\left(1 + \\sqrt{13 + 4 \\sqrt{5}}\\right) \\simeq 1.421\\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm811-9-2021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We first consider the additive Brownian motion process $(X(s_1,s_2),\ (s_1,s_2) \in \mathbb{R}^2)$ defined by $X(s_1,s_2) = Z_1(s_1) - Z_2 (s_2)$, where $Z_1$ and $Z_2 $ are two independent (two-sided) Brownian motions. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random set $\{(s_1,s_2)\in \mathbb{R}^2: X(s_1,s_2) >0\}$ is equal to $$ \frac{1}{4}\left(1 + \sqrt{13 + 4 \sqrt{5}}\right) \simeq 1.421\, . $$ Then the same result is shown to hold when $X$ is replaced by a standard Brownian sheet indexed by the nonnegative quadrant.
加性布朗运动气泡和布朗薄片边界的豪斯多夫维数
我们首先考虑由$X(s_1,s_2)=Z_1(s_1)-Z_2(s_2)$定义的加性布朗运动过程$(X(s_2,s_1),\in\mathbb{R}^2)$,其中$Z_1$和$Z_2$是两个独立的(双侧)布朗运动。我们在概率一的情况下证明了随机集$\{(s_1,s_2)\in\mathbb{R}^2:X(s_1、s_2)>0\}$的任意连通分量的边界的Hausdorff维数等于$\frac{1}{4}\left(1+\sqrt{13+4\sqrt{5}}\right)\simeq 1.421\,.$$。然后,当$X$被非负象限索引的标准布朗表取代时,同样的结果也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信