Elastic and nonlinear crack tip solutions comparison with respect to failure probability

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Shlyannikov, A. Tumanov, Nataliya Boychenko
{"title":"Elastic and nonlinear crack tip solutions comparison with respect to failure probability","authors":"V. Shlyannikov, A. Tumanov, Nataliya Boychenko","doi":"10.3221/igf-esis.62.01","DOIUrl":null,"url":null,"abstract":"This study represents a methodology to assess the probability of failure based on three the driving force formulations defined by the corresponding brittle and ductile fracture criteria for compact and bending specimens made of 34XH3MA and S55C steels. The elastic stress intensity factor (SIF) and two types of the non-linear plastic SIFs were considered as the driving force or generalized parameter (GP) to determine the probability of failure assuming a three-parameter Weibull distribution. The elastic SIF were experimentally obtained for studied materials and specimen geometries whereas the plastic SIFs were numerically calculated for the same material properties, specimen configurations and loading conditions according to classical J2 and strain gradient plasticity theories. Different specimen types with varying relative crack lengths and thicknesses were investigated. Proposed the normalized generalized parameter accounting for brittle or ductile fracture can be used as a suitable failure variable that is confirmed by comparison of the obtained failure cumulative distribution functions based on the three studied GPs.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.62.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study represents a methodology to assess the probability of failure based on three the driving force formulations defined by the corresponding brittle and ductile fracture criteria for compact and bending specimens made of 34XH3MA and S55C steels. The elastic stress intensity factor (SIF) and two types of the non-linear plastic SIFs were considered as the driving force or generalized parameter (GP) to determine the probability of failure assuming a three-parameter Weibull distribution. The elastic SIF were experimentally obtained for studied materials and specimen geometries whereas the plastic SIFs were numerically calculated for the same material properties, specimen configurations and loading conditions according to classical J2 and strain gradient plasticity theories. Different specimen types with varying relative crack lengths and thicknesses were investigated. Proposed the normalized generalized parameter accounting for brittle or ductile fracture can be used as a suitable failure variable that is confirmed by comparison of the obtained failure cumulative distribution functions based on the three studied GPs.
基于失效概率的弹性和非线性裂纹尖端解的比较
本研究提出了一种评估失效概率的方法,该方法基于由相应的34XH3MA和S55C钢的压实和弯曲试样的脆性和韧性断裂准则定义的三种驱动力公式。将弹性应力强度因子(SIF)和两种非线性塑性应力强度因子(SIF)作为动力或广义参数(GP)确定破坏概率,并假设三参数威布尔分布。根据经典的J2理论和应变梯度塑性理论,在相同的材料性能、试样形态和加载条件下,通过实验得到了所研究材料和试样几何形状的弹性SIF,并对塑性SIF进行了数值计算。不同的试样类型,不同的相对裂纹长度和厚度进行了研究。提出了考虑脆性或延性断裂的归一化广义参数可以作为合适的破坏变量,并通过对所研究的三种GPs得到的破坏累积分布函数的比较证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信